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Abstract Davison in 2015 used the famous Banach Fixed Point Theorem to
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1 Introduction

Let (Y, d) be a compact metric space. A map L from Y into itself is a Lips-
chitz contraction on (Y,d) if there exists a constant ¢, 0 < ¢ < 1, such that
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d(L(z), L(y)) < cd(x,y), for all z,y € Y. The smallest of all such constants is
called Lipschitz constant of L. Let L be a Lipschitz contraction on (Y, d). Since
Y is a complete metric space, it is well known that L admits a unique fixed
point y € Y, meaning that L(y) = y. This result is known as the Contraction
Mapping Principle or the Banach Fixed Point Theorem.

In [6], Hutchinson generalized the Banach Fixed Point Theorem to a fi-
nite family S = {o1,...,0n5} of Lipschitz contractions on (Y, d). Precisely, he
proved that there is a unique compact subset X C Y which is invariant under
S, meaning that

N
X = U oi(X).

A finite family of Lipschitz contractions on (Y, d) is called an iterated function
system (IFS) on Y, and the compact invariant subset X described above is
called the self-similar fractal set, or attractor set, associated to the IFS. More-
over, Hutchinson showed that the attractor set can be realized as the support
of a Borel probability measure on Y. This measure, which we denote by u,
satisfies the fixed point relation

Al |
() =D e (),
i=1

and is often referred to as the Hutchinson measure. It is the unique fixed point
of an appropriate Lipschitz contraction on the complete metric space of Borel
probability measures on Y equipped with the classical Kantorovich metric H

given by
H(p,v) = feLszfm {’/deu—/yfdv } (1)

where Lipy (V) ={f:Y = R:|f(z) — f(y)| < d(z,y) for all x,y € Y}.

In [7,8], Jorgensen generalized the Hutchinson measure to operator-valued
measures. He considered the Hilbert space L?(X,u), where X C Y is the
attractor associated to the IFS and p is the Hutchinson measure on Y, and
showed that there exists a unique projection-valued measure, E, defined on
the Borel sigma algebra of X taking values in the projections on L?(X, i) such
that

N
E() = Z SiE(o; ' (-))S5, (2)

for certain isometries S; on H and their adjoints S;.

In [4,5], Davison developed an alternative approach to proving this result.
In particular, given the Hilbert space H = L?(X,u) (or more generally, a
Hilbert space H which admits a representation of the Cuntz algebra on N
generators), he considered the space of projection-valued measures from the
Borel sigma algebra of X into the projections on H, and showed that this
space can be made into a complete an bounded metric space via a generalized
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Kantorovich metric. Davison used this result and the Fixed Point Theorem to
prove that there exists a unique projection-valued measure E satisfying (2).

The notions of the attractor set and the Hutchinson measure can be gen-
eralized to a countable iterated function system (CIFS) (see [1,9]). Precisely,
given a countable family & = {o; : i € N} of Lipschitz contractions on a
compact metric space (Y,d) such that sup{r; : ¢ € N} < 1, where r; is the
Lipschitz constant associated to o;, there exists a unique compact invariant
set X C Y such that

X = oi(X). (3)
ieN

This unique invariant set said to be the attractor set associated to the CIFS.
Furthermore, if P = {p;}icn is a probability sequence, then there exists a
unique invariant Borel probability measure p on Y, called the Generalized
Hutchinson measure associated to (S, P), such that

n(-) :ZPiMOUfl(')a (4)

and supp(p) = X (see [2]). Note that Bandt [1] showed that the attractor set
associated to the CIFS is not necessarily compact provide that (Y, d) not is a
compact metric space.

The main goal of this paper is to study a generalization of above result to
projection-valued measures. Although the techniques used in our proofs are
similar than those used in [4], the iterated function system with countably
many of Lipschitz contractions setting requires highly more effort.

The rest of the paper is structured as follows. In Section 2, we give all
assumptions and preliminary concepts which we need later. In Section 3, we
consider a CIFS, say S = {o; : i« € N}, a probability sequence P and the
Hilbert space L?(X,u), where X C Y is the attractor associated to S and
is the Generalized Hutchinson measure associated to (S, P). Then, show that
there exists a map on the space of projection-valued measures from the Borel
sigma algebra of X into the projections on L?(X, ). In Section 4, we prove
that the aforementioned map is a Lipschitz contraction on a complete metric
space via the generalized Kantorovich metric. As a consequence, we see that
there exists a unique projection-valued measure for S such that

E() = SiE(s;'()S],
i=1
for certain isometries S; on L?(X, ) and their adjoints S;.

2 Preliminaries

In this section we recall assumptions and preliminary concepts will be needed
throughout the paper.



4 M.F. Barrozo et al.

Let (X,d) be a compact metric space and let (H,(-,-)) be an arbitrary
Hilbert space. We denote by B(X) the Borel sigma algebra of X and by B(H)
space of bounded linear operators on H which are orthogonal projections (i.e.,
self-adjoint and idempotent operators).

Definition 1 A projection-valued measure with respect to the pair (X, H) is
amap F': B(X) — B(#) such that:

1. F(A) is a projection in B(#) for all A € B(X);

2. F(0) =0 and F(X) =idy (the identity operator on H);

3. F(A1 N Ay) = F(A1)F(Ay) for all Ay, Ay € B(X) (where the product
operation F'(A;)F(As) is the operator composition in B(H));

4. T {A,}22, is a sequence of pairwise disjoint sets in B(X), and if ¢, € H,
then

<F (U An> ¢,¢> Y (PlAe).

neN n=1

Lemma 1 [3, Lemma 1.9, p. 257] Let E be a projection-valued measure with
respect to the pair (X, H). For all ¢, € H and A € B(X),

By (A) = (BE(A),9)

defines a countably additive measure on B(X) with total variation less than or
equal to ||@|l[|¥[|3. Moreover, Egy(-) = Ey,o(-)-

Remark 1 If ¢ € H, Ey 4(-) is a positive measure with total mass equal to

1.

Let P(X) be the space of projection-valued measures from B(X) into the
projections on H. Define the generalized Kantorovich metric p on P(X) by

e g (e fol) o

where ||-|| denotes the operator norm in B(#), E and F are arbitrary members
of P(X), and [ fdFE is the unique bounded operator on H that satisfies

<</ de) ¢,¢> = /deEM, for all ¢,7 € H.

Recently, T. Davison [4] proved the following property of the metric space
(P(X), p)-

Theorem 1 [/, Theorem 2.11] Let (X,d) be a compact metric space. Then
the metric space (P(X), p) is complete.
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Let S = {o; : i € N} be a CIFS on (Y,d) with Lipschitz constants r;.
Assume r := sup{r; : i € N} < 1 and let X C Y be the attractor associated
to the CIFS satisfying o;(X) No;(X) = 0 for i # j.

We denote by M (X) the space of Borel probability measures on X.

From now on, P = {p; };en is a probability sequence and p € M (X) is the
Generalized Hutchinson measure associated to (S, P). Additionally, o : X —
X is a Borel measurable function such that

(cooj)(x) =, forallz € Uai(X), jeN. (6)
i€EN
As .
p (X\ U Ui(X)> =1- pinlo; H(oi(X)) =0, (7)
€N i=1
we have

O'OO'j:idx, jeN (8)

The following theorem shows a simple manner to generate a CIFS from a
IFS, under the above hypotheses.

Theorem 2 Let S = {r1,...,7,} be a IFS of injective maps on (Y,d) such
that the attractor set X associated to S satisfies

m(X)N7(X) =0 for i# ] (9)

Let F = {o0; : i € N} be the family given by 0; = 7F o Tg41 if i — 1 is of the
formp(n — 1) + q withp e NU{0} and 0 < g <n — 1. Then F is a CIFS on
(Y,d) such that

(a) Lipschitz constants s; associated to o; verifies sup{s; : 0; € F} <1,

(b) oi(X) No;(X) =0 fori # j,
(c) the attractor set associated to F is X .

Proof Tt is easy to see that F is a CIFS on (Y, d) satisfying (a).
Now assume i # jandleti—1=p(n—1)+gand j —1=p'(n—1) + ¢ with
p,p € NU{0} and 0 < q,¢' <n—1. When p =17, ¢ # ¢’ and thus

0i(X) N (X) = (7)) 0 7g12)(X) N (7] 0 T 1)(X) = 0,

where the last equality is due fact that 72 is a injective map, ¢+1 # ¢’ +1, and
(9). Suppose p # p’. Without loss of generality assume p < p’. Since ¢+ 1 < n,
from (9) we have 7411(X) N (72 7P 0 7/11)(X) = 0. Therefore, the injectivity
of 72 implies

0:(X) Noj(X) = (7] o 71)(X) N (T 0 78 P 0 7 1)(X) = 0.

This completes the proof of (b).
A straightforward computation shows that

U Jz(X) - Xa

€N
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because X is a compact set and 0;(X) C X, i € N.
Now, let z € X. By [6, (3) Theorem (iii)], there exists a sequence {«; };en €
{1,...,n}" such that

{a} = () (ras 0+ 0 7, )(X).

€N

We complete the proof by considering two cases:
(i) a; = n for all 4,

(ii) a; < n for some 3.

Assume (i) and let y € X be the fixed point of 7,,,

M = max{d(744+1(y),y) : 0 < g <n—1},

and j € N. As (7o, 0-+-070,)(y) = 7 (y) = y for all 4, from [6, (3) Theorem
(iv)] it follows that « = y. Let 7, be the Lipschitz constant associated to 7.
Since j —1=p(n—1) 4+ ¢ with p e NU{0} and 0 < g < n — 1, then

d(o;(y),z) = d((7]] 0 Tq41) (), TN (y)) < rhd(Tg41(y),y) < 1M,
and so
v = lim o;(y) € J ().

j —00
J €N

Now suppose (ii) and let j = min{i € N: a; < n}. If j = 1, then 7,, = 04,,
and thus
T €0y (X)C U i (X).
€N

If j > 2, then 74, 007y, = i71lo Ta; With a; < n, and therefore

S (7’6%1 o--- OTaj)(X) = O'(j,l)(n,l)Jraj(X) C U Ui(X).
€N

Consequently, X is the attractor set associated to F, and the proof of (¢) is
complete. a

Remark 2 Note that if S is a CIFS of injective maps, then every o; : (X, d) —
(0j(X),d) is a continuous bijection. So, the function ¢ : X — X can be
constructed as follows: if z € ¢;(X), j € N, let o(x) = 0;1(;1:); otherwise,
let o(x) = x. Further, it is easy to see that o is a Borel measurable function.
Indeed, as (X, d) is a compact space and (0;(X), d) is a Hausdorff space, then
oj:(X,d) = (0;(X),d) is a homeomorphism. Now, the equality

oA = x\JoX)|nA|ulJei(4), AcKX,
JEN JEN

completes the proof.
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Next, we offer an example of a possible scenario of work.

Ezample 1 Let Y = [0, 1] be with the standard metric on R, and we consider
the IFS {71, 72} given by

1 1 2
T1(x) = 3% and 7o(z) = §"T+ 3

It is well known that the Cantor ternary set, say X, is the attractor of {71, 72 }.
Since 71 (X)N72(X) = @, from Theorem 2 we obtain that the family {o; : i € N}
given by
1 gt
oi(x) = 30t T
is a CIF'S satisfying (a) — (¢) of Theorem 2.
Finally, the map o : X — X defined by

3-1 -1 3 -2
32‘71 ’ 3i

o(r) =3z — (3" = 3), xe[ }mx,

and o(1) = 1, is a Borel measurable function satisfying (6).

In the sequel, we consider the Hilbert space H = L?(X,pu), and define
Si,Sf:H—H,ieN, by

Si¢<¢oo>¢1@1@(x> and Sip= mi(doo), €M,  (10)

where 14 denotes the characteristic function of a set A.

3 A map on (P(X),p)

Let @ : P(X) — P(X) be the map given by

B(E)() =Y SiE(o;'(-)S}, (11)
i=1

where S;, S7, and o; are given in Section 2.

The main aim of this section is to prove that the map @ is well defined. For
this purpose, we need a list of theoretical results which we will show in what
follows. First, it is worth remembering the Lebesgue’s Monotone Convergence
Theorem for Series.

Lemma 2 [11, p.175] Let {a} i ren> be a double sequence of real numbers
such that 0 < aix < a;(p41), for all (i,k) € N2. Then

o0 o0
lim E Qi = E lim a;.
k—o00 4 . k—o00

=1 =1

Next proposition will be useful in what follows.
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Proposition 1 Let {v;}ien be a sequence of finite measures on B(X) and v
be a finite measure on B(X) such that v(A) =Y .2, vi(A) for all A € B(X).
If ¢ is v—integrable function on X, then ¢ is v;—integrable function on X for

all i, and
¢ dv = / ¢ dv;.

Proof It is clear that the proposition holds for characteristic functions. Then,
it is also true for non-negative simple functions due to the linearity of the
integral. Now, let ¢ be a non-negative v-measurable function. Then there exists
a sequence of non-negative simple functions {¢y } such that ¢, ¢, as k — oc.
According to the Beppo Levi Theorem we have

/qudyzkllngo;/){(ﬁk dv;.

Thus, Lemma 2 with a;, = [ ¢x dv; implies

/X(;Sdl/:i/xqﬁdui.

Finally, the general case of the real and complex functions ¢ also remains valid
since ¢ = ¢ — ¢~ and ¢ = Re(¢p) + ilm(¢), respectively. O

Here below, we show the change of variables formula for integrals.

Theorem 3 [10, Theorem 1.19] Suppose ¢ : X — X is a Borel function, v
is a Borel measure on X and f is a non-negative Borel function on X. Then

fd(uocl):/(foc) v,

s(X) X

where vos~ is the pushforward measure defined by (vos~1)(A) = v(c~1(A4)),
A€ B(X).

Remark 3 The above theorem remains valid if f is a real v—integrable function
on X.

The following Theorem generalizes [4, Theorem 1.5].
Theorem 4 The maps S;, i € N, are isometries, and the maps S?, i € N are
their adjoints. Moreover, these maps and their adjoints satisfy the relations:
(a) S:Sj = 5ijid?{; fO’I“ i,7 € N;
(b) > 55 =idy.

€N
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Proof Let i € N. Clearly, S; is a linear map. By Proposition 1,

I:615, = - [ 160 o)1, i = Z”J/ boofduoo;™)

i(X)

Since a{l(oi(X)) =X if i = j, and 0;1(01‘ (X)) = 0 otherwise, from Theorem
3 and (8), follows

HSZ¢||§_L :/ )|¢oa|2d(uooi—l) _ /X ‘¢og|2ogidﬂ

_ / 60 0 03)*dp = |3,
X

So, S; is a isometry.
Now, we show that S} is the adjoint of .S;. Let ¢,v € H. From Proposition 1
and Theorem 3 we have

S pi [ 1
OS;hdu = E —— oood(poo; ™)
/X = VP Joux) !

. cod(poo; ) = i oo;)d
S eedont) = v /X(¢ o) Py
- / (S2¢)Pd.

X

The relation (a) can be easily computed. Indeed, let ¢ € H, then

SSip = \/\/E((d)oo)lgj(x)) oo; = \/@(qﬁogoai)(lgj(x) 0a;),

Pj Pj
Since 1,,(x) © 0; = 6; j1x, according to (8) we obtain S/ S;¢ = §; j¢.
In order to prove (b), we note that
SZSZ*qb = (¢ ©0; 0 U)lai(X)~
From (6) it follows that o; 0 0|y, (x) = idy,(x), and so S; S} ¢ = ¢1,,(x). Thus,
(7) shows that

Z SzS;k(b = d)]'UiENO"L(X) = 0.

The proof is complete. O

We can now show that a series of orthogonal projections can be defined as
a orthogonal projection on H.

Lemma 3 [3, p. 256] Let {P;} be a sequence of pairwise orthogonal projec-
tions on H. Then for each ¢ in H, Y, . Pi¢p converges in H to Po, where P
is the orthogonal projection of H onto V{P;(H): i > 1}.
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Lemma 4 For each E € P(X) the map &(F) : B(X) — B(H) given by

is well defined.

Proof Set E € P(X). For A € B(X), let {P;} be a sequence of bounded linear
operator on H given by P; = S;E(o; '(A)S;, i € N. Let i € N, ¢, € H. By
Theorem 4 we have

P,Pig = (SiB(o; ' (4))S7)(SiB(oy ' (4))S7)¢

= S;E(0; 1 (A)E(0;1(A))S; ¢
(4)

= SiE(a,fl A))Sto
= Pz¢7
and
(P, ¥0) = (SiE(0; 1 (A))S; ¢,1)

= (E( A) S*¢,5 V)
<S*¢>, (4))S; %)
<¢> A))Siep)
= (¢, >

In addition, we also obtain

(Pi, Pyu) = (SiB(07 ' (4))S7 6, S;B(0; ' (A))Sj)

— (E(0;1(4))S; 6, S: 5, E(0; 1 (4))S:4)
= (B(071(A))S} ¢, i jidy E(o; (A))S3)
:O7

for ¢ # j. Thus, {P;} is a sequence of pairwise orthogonal projections on H,
and in consequence P(E)(A) is well defined by Lemma 3. O

Next we recall a relationship between double and iterated limits of double
sequences.

Let (Z,0) be a metric space. We recall that a double sequence hy,,, converges
to h € Z and we write limy ,,,—, o0 him = h, if the following condition is satisfied:
for every € > 0, there exists N = N(¢) € N such that 6(hym, h) < € for all
l,m > N. The element h is called the double limit of the double sequence
{hlm}(l,m)GNz'

It is clear to see that if the double sequence h;,, converges to h and

limy, o0 hym exists for each [, then the iterated limit lim lim hy,, exists
=00 m—00

and it is equal to h. We note that switching the roles of m and [ yields the
analogous result for the other iterated limit. So we have the following propo-
sition.
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Proposition 2 Suppose that the double sequence hy,, converges to h € Z. If

lim Ay, exists for each m, and lm hy,, exists for each l, then the iterated
l—o00 m— oo

limit lim lim Ay, and lim lim hy,, ezist and both are equal to h.
m—o0 [—o00 l—00 m—o0

The following result is a consequence of the above lemma.

Lemma 5 If {Pi,}n)en? is a sequence of pairwise orthogonal projections on

(oo} (oo} o0 oo
H, then > > P = > > Pin¢ forallp € H.

i=1n=1 n=1:=1
Proof Consider a bijection a : N — N2. Since {Pa()}ien is a sequence of
pairwise orthogonal projections on H, from Lemma 3, for each ¢ in H, we
have that

> Puiyé =P¢, (12)

ieN

where P is the orthogonal projection of H onto V{Py;)(H) : i > 1}.
Let F be the collection of all finite subsets F' C N2, and order F by inclusion,
so F becomes a directed set. For each F' € F and ¢ € H fixed, define

Prp=>_ P;o.
JEF

Then {Pr¢ : F € F}is a net in H. From [3, Definition 4.11, p.16] and (12) we
have that {Pp¢ : F € F} converge to Ph. Precisely, given a neighbourhood V/
of Pg, there exists Fy € N2 such that Pr¢ € V, for all F € F with Fy C F.
In particular, given € > 0, consider the neighbourhood V- = {¢p € H : ||¢b —
Poll3 < €}. Then, there exists Fy = {(z1,y1), (¥2,92), -+, (Tng, Yny)} C N?
such that Pr¢ € V, for all Fy C F. Therefore, if

N = max{xlayth’va cee 7xno7yn0}

and Fy,, = {(i,k) e N?2:1<i<[,1 <k <m}, then

> Png—Po| <e foralllm>N.
(ivn)EFMn H

In consequence,

1 m
lim )" Pin¢ = P

l,m—o00

i=1n=1
I m o0
Let hiym = Y. . P for (I,m) € N2, By Lemma 3, Y P,,¢ is convergent
i=1n=1 i=1

[ee]
for each n € N, and > P;,¢ is convergent for each i € N. Hence, llim him =
n=1 —00
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m oo I oo
> 3 Pipng for each m, and lim hy, = >, > Pip¢ for each I. So, from

n=14=1 m—00 i=1n=1

Lemma 2 we conclude that

DY Pnd =YY Pud=Po.

i=1 n=1 n=1i=1
The proof is complete. O
Now, we will prove that the map @ is well defined.
Theorem 5 The map @ : P(X) — P(X) given by

P(E)() = Z SiE(o; ' (1)},

is well defined.

Proof Set E € P(X) and let ¢,v € H. By Lemma 4, &(F)(A) € B(H), for
A € B(X). So, condition 1 of Definition 1 holds. Condition 2 of Definition 1
can be easily computed. Indeed,

B(E)(0) = S;E(0; ' (1))S; =0,
i=1
and according to Theorem 4 we get
B(E)(X) = 3 SiB(o; N(X)S; = 3 887 = idw.
i=1 i=1

To prove condition 3 of Definition 1, let Ay, Ay € B(X). We use the continuity
of S7, ¢ € N, and Theorem 4 to obtain that

D(E)(A1)P(E)(A2)p = ) SiE(0; ' (A1))S; (Z SjE(Uj_l(Az))S}‘¢>

i=1 j=1

j=1

=Y " SiE(o; (A1) (Z S;‘SjE(Ufl(Az))Sf¢>

_ Z SiE(o;1(Ay)) (Z 6i,jE(a;1(A2))5§¢)

j=1

iE(07 (M) E(0; ' (42))8] ¢

o

= 3 SBeT (A o (42850

=3 S0 (410 4))870

= B(E)(A; N As)é.
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Finally, to prove condition 4 of Definition 1, let {A,}52, be a sequence of
pairwise disjoint sets in B(X). As the pre-image preserves the union of sets,
and o; *(A,) No; (Am) = 0 for n # m, i € N, then the continuity of (-,-)
leads to

<<15(E) (U An> ¢>,w> = <Z Sils (U ail(An)> S§¢,w>
n=1 i=1 n=1

- Z <SiE (U a;l(An)> S?¢,¢>

= i <E (Gl aﬂ(An)) 57 o, S:w>

= ifﬁl (E(o; ' (A0))S; 6, 57)

= i 2 (SiB(o7 1 (An)S; )
(S S s @nson)

Let {Pin}(in)en> be a sequence of bounded linear operator on #H given by
P, = S’iE(U’l(An))S;‘. A similar analysis that in the proof of Lemma 4
shows that P;, are orthogonal projections. In addition,

(Pin®, Pim®b) = (E(07"(A))S; 6,6 jidy (05 (Am)) ;)
=0;; (S ¢, E(o fl(An))E(Ufl(Am))S;w>
—6H<S*<z>7 A mo»—l( ))S5)

8,5 (S7 ¢, a,,m n))S5 )
=0,

for (i,n) # (j,m). Thus, {Pi,}@n)en2 is a sequence of pairwise orthogonal
projections on ‘H. Now, Lemma 5 shows that

(oo} (oo}
> SiE(o; 1 (An)Sie = ZZSE 7H(An)S; 6.
i=1n=1 n=1 i=1

So, by the continuity of (-,-) we obtain that

() Bre]

n=1 =1

I
—
MS
&
&
L
g
<
~——
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The proof is complete. ad

4 A projection-valued measure for a CIFS
In this section, we prove the main result of this paper, that is, the existence
of a projection-valued measure for a CIFS.

First, we show that the map & given in (11) is a Lipschitz contraction on
(P(X),p). We start proving the following assertion:

= ZES;‘as,SM(UZl(A)), (13)

for all E € P(X), A € B(X) and ¢ € H. In fact,

D(E)p,p(A) = (2(E) => (S A))S: 6, ¢)
=1
=D _(B(o7'(A)S7¢,5/9) = ZESM,Sm(U{l(A))-

Theorem 6 The map ¢ : P(X) — P(X) given by

)= SiE(o;'(-)S
i=1
is a Lipschitz contraction on (P(X), p).

Proof Let r = sup{r;} and E, F € P(X). Choose f € Lip;(X). Since

1€N
[ 1o~ [ 1 aae)

is an operator self-adjoint,

|/ aom)~ [ 1 aoir)|
= s {[(([ra0e)- [ 1a0)0.0)]}.

Let ¢ € H be with ||¢]|lcc = 1. Then, by (13), Remark 1, Proposition 1 and
Remark 3, we have that

((f e f )
() (( fromn)os)
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— /}(fddﬁ(E)¢,¢/)(fd¢(F)¢,¢‘

= Z/ f d(Es: 50900, ")) —Z/ ! d(Fs;qs,smOUil)‘
i=1vX i=17X

= Z/ fooi dE5;¢75:¢7Z/ fOO'i dFS;‘¢,Sf¢
i=17X i=17X

= Z(/ foo; dEsmsw—/ fouai dFszaxsz«ﬁ)‘
— X X

o0 ooy

> o0y o0
/f - dEs¢s¢_/ Lo dFs: .56

(/22 225 ) )

o0; i ”
(H/f a- [ L2 dFH Is; ¢||H>

Note that the function £ %L € Lipy(X), for all i € N. Hence, Theorem 4 implies

=r

oo

HMg |Fﬂ

that
([ aote)- [ rante) o)
< rp(E, F) (i_oj <S:¢,S;*¢>> = rp(E, F) (i (5:576.0 )
=rp(E, F) <<ZSS*> ¢, ¢>> =1p(E, F) (¢,9) = rp(E, F),
Therefore, B

| [ 1d0m) - [ 1 aor)| < rote. .
Since f is an arbitrary element of Lip; (X),
p(P(E), &(F)) < rp(E, F),
with r < 1. This proves that @ is a Lipschitz contraction on (P(X), p). O

By Theorems 1 and 6 we have that @ is a contraction on the complete metric
space (P(X), p). So, by the Banach Fixed Point Theorem, we can deduce our
main result, which extends [4, Theorem 1.7].
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Theorem 7 Let {o; : i € N} be a CIFS on a compact metric space (Y, d) with
Lipschitz constants r;. Assume r :=sup{r; : 1 € N} <1 and let X CY be the
attractor associated to the CIFS satisfying o;(X) Noj(X) =0 fori # j. We
consider the isometries S; and S} defined in (10).Then there exists a unique
projection-valued measure, E € P(X), such that

B(A) =Y SE(07(A)S;,

for all A € B(X).
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