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Abstract. In this paper we consider the best polynomial approx-
imation operator, defined in an Orlicz space LΦ(B), and its exten-
sion to Lϕ(B), where ϕ is the derivative function of Φ. A charac-
terization of these operators and several properties are obtained.
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1. Introduction

In this paper we set = for the class of all continuous and nonde-
creasing functions ϕ defined for all real number t ≥ 0, with ϕ(0+) = 0,
ϕ(t) → ∞ as t → ∞ and ϕ(t) > 0 for x > 0. We also assume a ∆2

condition for the functions ϕ, which means that there exists a constant
Λ = Λϕ > 0 such that ϕ(2a) ≤ Λϕ(a) for all a ≥ 0.

Now given ϕ ∈ = we consider Φ(x) =
∫ x

0
ϕ(t) dt. Observe that

Φ : [0,∞) → [0,∞) is a convex function such that Φ(a) = 0 iff a = 0.

For such a function Φ we have Φ(x)
x
→ 0 as x → 0 and Φ(x)

x
→ ∞ as

x → ∞, and according to [4], a function with this property is called
an N function. Observe that the function ϕ satisfies a ∆2 condition if
and only if the function Φ satisfies a ∆2 condition.

If ϕ ∈ = then it satisfies a ∆2 condition. Thus the next inequality
holds

(1.1)
1

2
(ϕ(a) + ϕ(b)) ≤ ϕ(a+ b) ≤ Λϕ(ϕ(a) + ϕ(b))

for every a, b ≥ 0.
Also note that the ∆2 condition on Φ implies

(1.2)
x

2Λϕ

ϕ(x) ≤ Φ(x) ≤ xϕ(x),

for every x ≥ 0.
Let B be a bounded measurable set in Rn. If ϕ ∈ =, we denote

by Lϕ(B) the class of all Lebesgue measurable functions f defined on
Rn such that

∫
B
ϕ(t|f |) dx < ∞ for some t > 0 and where dx denotes
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the Lebesgue measure on Rn. Note that as ϕ ∈ = and it satisfies a ∆2

condition then Lϕ(B) is the space of all measurable functions f defined
on Rn such that

∫
B
ϕ(|f |) dx <∞. For the convex function Φ, LΦ(B)

is the classical Orlicz space very well studied in [4] and [5].
Let Πm be the space of algebraic polynomials, defined on Rn, of

degree at most m. Then a polynomial P ∈ Πm is called a best approx-
imation of f ∈ LΦ(B) if and only if

(1.3)

∫
B

Φ(|f − P |) dx = inf
Q∈Πm

∫
B

Φ(|f −Q|) dx.

Definition 1. For f ∈ LΦ(B) we set µΦ(f) for the set of all polyno-
mials P that satisfy (1.3).

In the sequel we also refer to µΦ(f) as the multivalued operator
defined for functions in LΦ(B) and images on Πm.

In this paper we study the nature of this best polynomial approxi-
mation for functions in LΦ(B) and we extend, in a continuous way, the
definition of best polynomial approximation for functions belonging to
Lϕ(B) where ϕ = Φ′. These results extend those obtained in [1] for
the Lp case. In Section 2 we define the best polynomial approximation
operator for each f ∈ LΦ(B) and we characterize this best approxima-
tion in a similar way as it has done in [3] for functions of LΦ(B) in the
case that the approximation class is a lattice instead of the space of
polynomials. We also get a strong type inequality for f ∈ LΦ(B) which
generalizes Theorem 2.1 in [2] where the extended best polynomial ap-
proximation operator is considered for functions in Lp(B). In Section
3 we use this inequality to extend the best polynomial approximation
from LΦ(B) to Lϕ(B), where ϕ = Φ′. This is done in an easier way
than the one developed in [1], where the existence of the extension is
proved without using the inequality in Theorem 2.4. At the end of
this section, we prove the uniqueness and a continuity property for the
extended best polynomial approximation of f ∈ Lϕ(B) for a strictly
increasing functions ϕ ∈ =.

2. Existence and uniqueness of the best polynomial
approximation operator in LΦ(B)

For P ∈ Πm we set ‖P‖∞ = max
x∈B
|P (x)| and ‖P‖1 =

∫
B
|P | dx.

We begin with the existence of the best polynomial approximation
operator of functions in LΦ(B). We start with the next lemma.

Lemma 2.1. Let ϕ ∈ =, Φ(x) =
∫ x

0
ϕ(t) dt and let Pn be a sequence in

Πm, such that there exists a constant C that satisfies
∫
B

Φ(|Pn|) dx ≤ C.
Then, the sequence Pn is uniformly bounded.

Proof. From Jensen’s inequality we have

(2.1) |B|Φ
( 1

|B|

∫
B

|Pn| dx
)
≤
∫
B

Φ(|Pn|) dx ≤ C.
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Then, since ‖P‖1 is equivalent to ‖P‖∞, for P ∈ Πm and using the ∆2

condition on Φ, we obtain

Φ(‖Pn‖∞) ≤M,

for some constant M. Then, as Φ(x) goes to ∞ when x goes to ∞ the
lemma follows. �

The next two theorems follow standard techniques. However, for the
sake of completeness, detailed proofs of them are included.

Theorem 2.2. Let ϕ ∈ =, Φ(x) =
∫ x

0
ϕ(t) dt and let f ∈ LΦ(B).

Then, there exists P ∈ Πm such that∫
B

Φ(|f − P |) dx = inf
Q∈Πm

∫
B

Φ(|f −Q|) dx.

Proof. Let I = inf
Q∈Πm

∫
B

Φ(|f − Q|) dx, then there exists a sequence

{Pn}n∈N ⊂ Πm such that

(2.2)

∫
B

Φ(|f − Pn|) dx→ I as n→∞.

Due to the monotonicity and convexity of Φ on [0,∞), we get

Φ

(
|Pn|

2

)
≤ Φ

(
1

2
|Pn − f |+

|f |
2

)
≤ 1

2
Φ(|Pn − f |) +

1

2
Φ(|f |).

Thus ∫
B

Φ

(
|Pn|

2

)
dx ≤ 1

2

∫
B

Φ(|Pn − f |) dx+
1

2

∫
B

Φ(|f |) dx,

and then

(2.3) 2

∫
B

Φ

(
|Pn|

2

)
dx ≤

∫
B

Φ(|f |) dx+ I + 1.

Now, Lema 2.1 implies ‖Pn‖∞ ≤ K. Hence, there exists a subsequence
{Pnk
} ⊆ {Pn}{n∈N} such that {Pnk

} converges uniformly on Πm.
Let P = lim

nk→∞
Pnk

. Since Φ satisfies the ∆2 condition we have

Φ(|f − Pnk
|) ≤ ΛΦ(Φ(|f |) + Φ(|Pnk

|)) ≤ ΛΦ(Φ(|f |) + Φ(K)).

Then, by Lebesgue Dominated Convergence Theorem, we have I =∫
B

Φ(|f − P |) dx. �

The next theorem gives a characterization of the best polynomial
approximation of functions in LΦ(B).

Theorem 2.3. Let ϕ ∈ =, Φ(x) =
∫ x

0
ϕ(t) dt and let f ∈ LΦ(B). Then

P ∈ Πm is in µΦ(f) if and only if

(2.4)

∫
B

ϕ(|f − P |)sgn(f − P )Qdx = 0,

for every Q ∈ Πm.
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Proof. For P in µΦ(f) and Q ∈ Πm we set

FQ(ε) =

∫
B

Φ(|f − P + εQ|) dx.

Next we prove that FQ is a convex function defined on [0,∞). For
a, b ≥ 0 such that a+ b = 1, we have

FQ(aε1 + bε2) =

∫
B

Φ(|(a+ b)(f − P ) + (aε1 + bε2)Q|) dx ≤∫
B

Φ(a|(f − P ) + ε1Q|+ b|(f − P ) + ε2Q|) dx ≤∫
B

aΦ(|(f − P )|+ ε1Q|) dx+

∫
B

bΦ(|(f − P )|+ ε2Q|) dx =

aFQ(ε1) + bFQ(ε2),

for every ε1, ε2 ≥ 0. Then

(2.5) FQ(0) = min
[0,∞)

FQ(ε),

and this identity holds if and only if 0 ≤ F ′Q(0+).
Now, using the Mean Value Theorem we have

|Φ(|f − P + εQ|)− Φ(|f − P |)|
ε|Q|

≤ |Q|(ϕ(|f − P |) + ϕ(|Q|)),

for 0 ≤ ε ≤ 1.
Then, since |Q|(ϕ(|f − P |) + ϕ(|Q|)) is an integrable function, we

are allowed to differentiate inside the integral in the formula of FQ(ε)
and therefore

(2.6) 0 ≤ F ′Q(0+) =

∫
B

ϕ(|f − P |)sgn(f − P )Qdx,

for any Q ∈ Πm.
Now for any polynomial Q ∈ Πm we take the polynomial −Q in (2.6)

and this completes the proof. �

The following result, similar to Theorem 2.1 in [2], provides us an
inequality that we will need below.

Theorem 2.4. Let ϕ ∈ =, Φ(x) =
∫ x

0
ϕ(t) dt and let f ∈ Lϕ(B).

Suppose the polynomial P ∈ Πm satisfies

(2.7)

∫
B

ϕ(|f − P |)sgn(f − P )Qdx = 0,

for every Q ∈ Πm. Then

(2.8)

∫
B

ϕ(|P |)|Q| dx ≤ 5Λϕ

∫
B

ϕ(|f |)|Q| dx,

for every Q ∈ Πm satisfying sgn(Q(t)P (t)) = (−1)η at any t ∈ B such
that Q(t)P (t) 6= 0 and where η = 0 or η = 1.
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Proof. Suppose first let Q ∈ Πm such that Q(t)P (t) > 0.
Let N = {t ∈ B : f(t) > P (t)} and L = {t ∈ B : f(t) ≤ P (t)}.

Then

0 =

∫
N∪L

ϕ(|f − P |) sgn(f − P )Qdx =∫
N

ϕ(|f − P |) sgn(f − P )Qdx+

∫
L

ϕ(|f − P |) sgn(f − P )Qdx

Thus

(2.9)

∫
N

ϕ(|f − P |)Qdx =

∫
L

ϕ(|f − P |)Qdx.

Let H(t) = ϕ(|P (t)− f(t)|)Q(t) and consider the sets
U1 = N ∩ {t ∈ B : P (t) ≥ 0}, U2 = N ∩ {t ∈ B : P (t) < 0},
U3 = L ∩ {t ∈ B : P (t) ≥ 0}, U4 = L ∩ {t ∈ B : P (t) < 0}.
Then, by (2.9), we get∫

U1∪U2

H dx =

∫
U3∪U4

H dx

and therefore

(2.10)

∫
U1

H dx−
∫
U4

H dx =

∫
U3

H dx−
∫
U2

H dx.

Due to the monotonicity of ϕ, we have∫
B

ϕ(|P |)|Q| dx ≤
∫
B

ϕ(|P − f |+ |f |)|Q| dx

and using (1.1) we get∫
B

ϕ(|P−f |+|f |)|Q| dx ≤ Λϕ

∫
B

ϕ(|P−f |)|Q| dx+Λϕ

∫
B

ϕ(|f |)|Q| dx =

Λϕ

∫
4⋃

i=1
Ui

|H| dx+ Λϕ

∫
B

ϕ(|f |)|Q| dx =

Λϕ

4∑
i=1

∫
Ui

|H| dx+ Λϕ

∫
B

ϕ(|f |)|Q| dx = Λϕ(I1 + I2)

Now, we will find an upper bound of I1 =
4∑
i=1

∫
Ui
|H| dx.

Note that we have |P − f | ≤ |f | on U1 and U4. Next, since the mono-
tonicity of ϕ, we obtain∫

U1∪U4

|H| dx =

∫
U1

|H| dx+

∫
U4

|H| dx ≤∫
U1

ϕ(|f |)|Q| dx+

∫
U4

ϕ(|f |)|Q| dx ≤ 2

∫
B

ϕ(|f |)|Q| dx.
(2.11)
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Since sgnQ = sgnP , from (2.10) and (2.11), we get∫
U2

|H| dx+

∫
U3

|H| dx =

∫
U2

(−H) dx+

∫
U3

H dx =∫
U1

H dx−
∫
U4

H dx =

∫
U1

|H| dx+

∫
U4

|H| dx =∫
U1∪U4

|H| dx ≤ 2

∫
B

ϕ(|f |)|Q| dx

(2.12)

Therefore I1 ≤ 4
∫
B
ϕ(|f |)|Q| dx and

(2.13)

∫
B

ϕ(|P |)|Q| dx ≤ 5Λϕ

∫
B

ϕ(|f |)|Q| dx.

Now if Q ∈ Πm satisfies Q(t)P (t) < 0 we proceed in an analogous way
to obtain (2.12), then∫

U2

|H| dx+

∫
U3

|H| dx =

∫
U2

H dx−
∫
U3

H dx =

−
∫
U1

H dx+

∫
U4

H dx =

∫
U1

|H| dx+

∫
U4

|H| dx =∫
U1∪U4

|H| dx ≤ 2

∫
B

ϕ(|f |)|Q| dx,

and thus

(2.14)

∫
B

ϕ(|P |)|Q| dx ≤ 5Λϕ

∫
B

ϕ(|f |)|Q| dx

for Q ∈ Πm such that Q(t)P (t) < 0.
Finally, (2.8) follows from (2.13) and (2.14) �

The next corollary will be useful in the sequel.

Corollary 2.5. Let ϕ ∈ =, Φ(x) =
∫ x

0
ϕ(t) dt and let f ∈ LΦ(B).

If P is the best polynomial approximation of f ∈ LΦ(B), then

(2.15)

∫
B

ϕ(|P |)|P | dx ≤ 5Λϕ‖P‖∞
∫
B

ϕ(|f |) dx.

Proof. It follows for Q = P in (2.8) of Theorem 2.4 and employing
|P | ≤ ‖P‖∞. �

Remark 2.6. In order to obtain Theorem 2.4 we only have used that the
polynomial P is a solution of (2.7) for f in Lϕ(B). Thus the inequality
(2.15) holds for any polynomial P that satisfies identity (2.7) and f
belonging to Lϕ(B).
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3. Extension of the best polynomial approximation to
Lϕ(B)

In order to get a continuous extension of µΦ(f) for functions in the
bigger space Lϕ(B) we need the following auxiliary results. Throughout
this section we will consider ϕ ∈ = and Φ(x) =

∫ x
0
ϕ(t) dt.

Lemma 3.1. Let fn be a sequence in LΦ(B), such that there exists
a constant C that satisfies

∫
B
ϕ(|fn|) dx ≤ C. Then {‖P‖∞ : P ∈

µΦ(fn), n = 1, 2, . . .} is bounded.

Proof. Using Corollary 2.5, we have

(3.1)

∫
B

ϕ(|P |)|P | dx ≤ 5Λϕ‖P‖∞
∫
B

ϕ(|fn|) dx ≤ 5CΛϕ‖P‖∞,

for each P ∈ µΦ(fn) and for every all n. Thus, using (1.2) we get∫
B

Φ(|P |) dx ≤ 5ΛϕC‖P‖∞.

Then, from Jensen’s inequality, we obtain

|B|Φ
( 1

|B|

∫
B

|P | dx
)
≤
∫
B

Φ(|P |) dx.

Now, since ‖P‖1 is a norm which is equivalent to ‖P‖∞, for P ∈ Πm,
we obtain for a suitable constant K,

Φ
( K
|B|
‖P‖∞

)
≤ 5Λ2

ϕ

C

|B|
‖P‖∞.

Thus taking into account that Φ(x)
x

goes to ∞ as x tends to ∞ the
lemma is proved. �

Lemma 3.2. Let fn, f be functions in Lϕ(B) such that

(3.2)

∫
B

ϕ(|fn − f |) dx→ 0

as n→∞.
Also let gn, g be measurable functions such that |gn| ≤ C for all n and
gn → g a.e. as n→∞. Then there exists a subsequence nk such that

(3.3)

∫
B

ϕ(|fnk
|)gnk

dx→
∫
B

ϕ(|f |)g dx

as k →∞.

Proof. Since ϕ is a non decreasing function and ϕ(x) > 0 for x >
0, there exists a subsequence fnk

which converges to f a.e. We will
use now that the sequence ϕ(|fn|) has an equiabsolutely continuous
integrals. That means, for every ε > 0 there exists δ > 0 such that
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E
ϕ(|fn|) dx ≤ ε, for any E ⊂ B, |E| ≤ δ, and for every n. This fact

follows at once from
∫
B
ϕ(|f − fn|) dx→ 0, and∫

E

ϕ(|fn|) ≤ Λϕ

∫
B

ϕ(|f − fn|) dx+ Λϕ

∫
E

ϕ(|f |) dx.

Now, by the Egorov’s theorem, given δ > 0 there exists
F ⊂ B, |B − F | < δ such that the subsequence ϕ(|fnk

|)gnk
uniformly

converges to ϕ(|f |)g on F. Then∫
B

ϕ(|fnk
|)gnk

dx−
∫
B

ϕ(|f |)g dx =∫
B−F

(ϕ(|fnk
|)gnk

− ϕ(|f |)g) dx+

∫
F

(ϕ(|fnk
|)gnk

− ϕ(|f |)g) dx

= Ik + Jk.

Now, using the uniform convergence of the sequence on F we have that
Jk goes to 0 as k goes to ∞. On the other hand, since we are dealing
with equiabsolutely continuous integrals we get |Ik| < ε for every k. �

Theorem 3.3. If f ∈ Lϕ(B), then there exists P ∈ Πm such that

(3.4)

∫
B

ϕ(|f − P |)sgn(f − P )Qdx = 0,

for every Q ∈ Πm.
And

(3.5)

∫
B

Φ(|P |) dx ≤ K‖P‖∞
∫
B

ϕ(|f |) dx,

for a suitable constant K.

Proof. Set the sequence of functions fn = min(max(f,−n), n) which
are in LΦ(B). Then, by Theorem 2.3, there exists Pn ∈ µΦ(fn) such
that

(3.6)

∫
B

ϕ(|fn − Pn|)sgn(fn − Pn)Qdx = 0,

for every Q ∈ Πm.
Observe that

∫
B
ϕ(|fn − f |) dx → 0, as n → ∞. Now, by Lemma 3.1,

the sequence ‖Pn‖∞ is bounded. Then there exists a subsequence Pnk

which uniformly converges on B to a polynomial P ∈ Πm. Thus, by
Lemma 3.2, we get

0 = lim
k→∞

∫
B

ϕ(|fnk
− Pnk

|)sgn(fnk
− Pnk

)Qdx =∫
B

ϕ(|f − P |)sgn(f − P )Qdx,
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for every Q ∈ Πm.
Now, by Remark 2.6 and (1.2) we also get∫

B

Φ(|P |) dx ≤
∫
B

ϕ(|P |) |P | dx ≤ 5Λϕ‖P‖∞
∫
B

ϕ(|f |) dx,

and the proof is completed. �

Now Theorem 3.3 allows us to extend the definition of the best ap-
proximation operator for functions in Lϕ(B).

Definition 2. For f ∈ Lϕ(B) we set µϕ(f) for the set of polynomials
P ∈ Πm that satisfy (3.4) and we refer to this set as the extended best
approximation operator.

Next, we list some properties of this best approximation operator.

Theorem 3.4. If Φ is a strictly convex function, then there exists a
unique extended best polynomial approximation for every f ∈ Lϕ(B).

Proof. For f ∈ Lϕ(B) we consider P1, P2 ∈ µϕ(f), P1 6= P2, then∫
B

ϕ(|f − P1|)sgn(f − P1)Qdx =∫
B

ϕ(|f − P2|)sgn(f − P2)Qdx = 0,

(3.7)

for every Q ∈ Πm.
Set the polynomial R = P1 − P2 ∈ Πm and the pairwise disjoint sets

A = {x ∈ B : P2(x) > P1(x)}
B = {x ∈ B : P1(x) > P2(x)}
C = {x ∈ B : P1(x) = P2(x)}

then A ∪B ∪ C = B and µ(C) = 0.
Since Φ is a strictly convex function we have that ϕ(|x|)sgn(x) is a
strictly increasing function. Consider R < 0 and f − P2 < f − P1 on
the set A, then

ϕ(|f − P2|)sgn(f − P2) < ϕ(|f − P1|)sgn(f − P1)

and thus

ϕ(|f − P1|)sgn(f − P1)R < ϕ(|f − P2|)sgn(f − P2)R.

Hence

(3.8)

∫
A

ϕ(|f−P1|)sgn(f−P1)Rdx ≤
∫
A

ϕ(|f−P2|)sgn(f−P2)Rdx.

Analogously if R > 0 and f − P1 < f − P2 on the set B, then

ϕ(|f − P1|)sgn(f − P1)R < ϕ(|f − P2|)sgn(f − P2)R.
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Therefore

(3.9)

∫
B

ϕ(|f−P1|)sgn(f−P1)Rdx ≤
∫
B

ϕ(|f−P2|)sgn(f−P2)Rdx.

Now, since P1 and P2 are continuous functions and P1 6= P2 on B, then
µ(A) > 0 or µ(B) > 0. Thus, at least one of the inequalities (3.8) or
(3.9) must be strict.
From (3.7), (3.8) and (3.9) we get

0 =

∫
B

ϕ(|f − P1|)sgn(f − P1)Rdx =∫
A

ϕ(|f − P1|)sgn(f − P1)Rdx+

∫
B

ϕ(|f − P1|)sgn(f − P1)Rdx <∫
A

ϕ(|f − P2|)sgn(f − P2)Rdx+

∫
B

ϕ(|f − P2|)sgn(f − P2)Rdx =∫
B

ϕ(|f − P2|)sgn(f − P2)Rdx = 0,

which is a contradiction and the proof is completed. �

Proposition 3.5. For any f ∈ Lϕ(B) it satisfies µϕ(f+P ) = µϕ(f)+
P for all P ∈ Πm.

Proof. It follows directly from the definition of the extended best ap-
proximation operator µϕ(f). �

Theorem 3.6. Let Φ be a strictly convex function and hn, h ∈ Lϕ(B)
such that

(3.10)

∫
B

ϕ(|hn − h|) dx→ 0 as n→∞.

Then µϕ(hn)→ µϕ(h) as n→∞.

Proof. Set Pn = µϕ(hn). By inequality (3.5) the sequence Pn is uni-
formly bounded. We consider a subsequence Pnk

which converges to a
polynomial P. Now, we select a subsequence of hnk

, which will be also
called by hnk

, that converges to h a.e; we also have, for any Q ∈ Πm,

(3.11)

∫
B

ϕ(|hnk
− Pnk

|)sgn(hnk
− Pnk

)Qdx = 0.

Now, by Lemma 3.2, we get

(3.12)

∫
B

ϕ(|h− P |)sgn(h− P )Qdx = 0,

and taking into account Theorem 3.4, P = µϕ(f) and the whole se-
quence Pn converges to P. Thus the proof is completed. �



Sonia Acinas, Sergio Favier and Felipe Zó 11
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3 Instituto de Matemática Aplicada San Luis, CONICET and Depar-
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