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ABSTRACT. In this paper we consider the best polynomial approx-
imation operator, defined in an Orlicz space L®(B), and its exten-
sion to L¥(B), where ¢ is the derivative function of ®. A charac-
terization of these operators and several properties are obtained.
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1. INTRODUCTION

In this paper we set & for the class of all continuous and nonde-
creasing functions ¢ defined for all real number ¢ > 0, with p(07) = 0,
o(t) — oo as t — oo and p(t) > 0 for z > 0. We also assume a A,
condition for the functions ¢, which means that there exists a constant
A=A, > 0 such that p(2a) < Ap(a) for all a > 0.

Now given ¢ € I we consider ®(z) = [ ¢(t) dt. Observe that
® : [0,00) — [0,00) is a convex function such that ®(a) = 0 iff a = 0.
For such a function ® we have @ — 0asz — 0 and @ — 00 as
x — o0, and according to [4], a function with this property is called
an N function. Observe that the function ¢ satisfies a Ay condition if
and only if the function ® satisfies a Ay condition.

If p € & then it satisfies a As condition. Thus the next inequality
holds

(1) () +o(B) < pla+b) < As(ola) + o)

for every a,b > 0.

Also note that the As condition on ® implies
(12 Sla) < 0(2) < (o),
2\,
for every x > 0.

Let B be a bounded measurable set in R™. If ¢ € &, we denote
by L¥(B) the class of all Lebesgue measurable functions f defined on
R™ such that [, ¢(t|f]) dx < oo for some ¢ > 0 and where dz denotes
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the Lebesgue measure on R™. Note that as ¢ € & and it satisfies a Ay
condition then L¥(B) is the space of all measurable functions f defined
on R™ such that [, ¢(|f]) de < co. For the convex function ®, L®(B)
is the classical Orlicz space very well studied in [4] and [5].

Let II"™ be the space of algebraic polynomials, defined on R", of
degree at most m. Then a polynomial P € II" is called a best approx-
imation of f € L*(B) if and only if

a3 [a(r=Phie= jaf [ o(r-Qpar

Definition 1. For f € L*(B) we set ps(f) for the set of all polyno-
mials P that satisfy (1.3).

In the sequel we also refer to pug(f) as the multivalued operator
defined for functions in L®(B) and images on II™.

In this paper we study the nature of this best polynomial approxi-
mation for functions in L*(B) and we extend, in a continuous way, the
definition of best polynomial approximation for functions belonging to
L?(B) where ¢ = ®’. These results extend those obtained in [1] for
the LP case. In Section 2 we define the best polynomial approximation
operator for each f € L®(B) and we characterize this best approxima-
tion in a similar way as it has done in [3] for functions of L*(B) in the
case that the approximation class is a lattice instead of the space of
polynomials. We also get a strong type inequality for f € L®(B) which
generalizes Theorem 2.1 in [2] where the extended best polynomial ap-
proximation operator is considered for functions in LP(B). In Section
3 we use this inequality to extend the best polynomial approximation
from L*(B) to L¥(B), where o = ®'. This is done in an easier way
than the one developed in [1], where the existence of the extension is
proved without using the inequality in Theorem 2.4. At the end of
this section, we prove the uniqueness and a continuity property for the
extended best polynomial approximation of f € L?(B) for a strictly
increasing functions ¢ € 3.

2. EXISTENCE AND UNIQUENESS OF THE BEST POLYNOMIAL
APPROXIMATION OPERATOR IN L%(B)

For P € TI™ we set || P||o = maéc\P(xﬂ and | Py = [, |P|dz.
e

We begin with the existence of the best polynomial approximation
operator of functions in L*(B). We start with the next lemma.

Lemma 2.1. Let p € S, ®(x) = [ p(t) dt and let P, be a sequence in
11", such that there exists a constant C' that satisfies [, (| P,|) dx < C.
Then, the sequence P, is uniformly bounded.

Proof. From Jensen’s inequality we have

(2.1) \B@(’—;/Bwnmx) g/B<I>(|Pn])dx§C.
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Then, since || P||; is equivalent to || P||, for P € II"™ and using the A,
condition on ¢, we obtain

([ Pralloc) < M,

for some constant M. Then, as ®(x) goes to oo when = goes to co the
lemma follows. i

The next two theorems follow standard techniques. However, for the
sake of completeness, detailed proofs of them are included.

Theorem 2.2. Let ¢ € S, ®(z) = [ ¢(t)dt and let f € L*(B).
Then, there exists P € 1I"™ such that

[ @l = Plydz = jnf /‘P(\f—Q!)dx

Proof. Let I = mf J5 ®(|f — Q|) dx, then there exists a sequence
{P, }neny C II"™ Such that

(2.2) /BCI>(|f—Pn|)d:r—>I as m — 00.

Due to the monotonicity and convexity of ® on [0, 00), we get

cp(@) (|p f|+‘f’)< L8P, — f) + 5201 f]).
Thus
) o< [ aan - hass g [ e

fe (!
(2.3) 2/3@(”;') da </B<I>(|f|)dx+l+1.

and then
Now, Lema 2.1 implies || P,|| < K. Hence, there exists a subsequence
{Pa.} € {Pn}{neny such that {P,, } converges uniformly on II™.

Let P = lim P,,. Since ® satisfies the Ay condition we have

N —00

O(|f = Pu,]) < Aa(@(IS]) + (|Por])) < Aa(D(|]) + B(K)).

Then by Lebesgue Dominated Convergence Theorem, we have I =
[z ®(If — P|)dz. 0

The next theorem gives a characterization of the best polynomial
approximation of functions in L®(B).

Theorem 2.3. Let ¢ € S, ®(x) = [ (t)dt and let f € L*(B). Then
P e II™ is in pe(f) if and only if

(2.4) [ 41 = Phsats ~ Pr@ s =0
B
for every Q € I1™.
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Proof. For P in pe(f) and @ € II"™ we set

Fole) = /BCI>(|f ~ P 2Q|) da.

Next we prove that F is a convex function defined on [0, 00). For
a,b > 0 such that a + b =1, we have

Fo(aey + bey) = /B(I>(|(a +b)(f — P)+ (aey + bex)Q)|) dx <

/B (al(f — P) + 61Q| +bl(f — P) + xQ|) d <

[ a®lltr =P+ aQde+ [ 40(1(F = P+ Q) dr =
CLFQ(El) ‘f‘ bFQ(GQ),

for every €, €5 > 0. Then

(2.5) Fp(0) = min Fy(e),

[0,00)
and this identity holds if and only if 0 < F,(07).
Now, using the Mean Value Theorem we have

= P el = =20 < 0ttty - P+ 1)

for 0 <e<1.

Then, since |Q|(p(|f — P|) + ¢(|Q])) is an integrable function, we
are allowed to differentiate inside the integral in the formula of Fi(e)
and therefore

20 0= F0) = [ f = Phsen(s ~ P)Q.

for any @ € II™.
Now for any polynomial @) € II"™ we take the polynomial —@Q in (2.6)
and this completes the proof. U

The following result, similar to Theorem 2.1 in [2], provides us an
inequality that we will need below.

Theorem 2.4. Let ¢ € S, ®(x) = [ p(t)dt and let f € L?(B).
Suppose the polynomial P € 1™ satisfies

(2.7) / o(1f — Psgu(f — P)Qdz =0,
B

for every @ € I1I"™. Then

(2.8) / o(IP)IQ|dr < 5A, / o(17)1Q] d,

for every Q € TI'™ satisfying sgn(Q(t)P(t)) = (—1)" at any t € B such
that Q(t)P(t) # 0 and where n =0 orn = 1.
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Proof. Suppose first let @ € II"™ such that Q(¢)P(t) > 0.
Let N={te B: f(t)>P(t)} and L={t € B: f(t) < P(t)}.
Then

0= / o(f — Pl)sgn(f — P)Qdz =
NUL

/N o(1f — Pl)sen(f — P)Qdz + / o(1f — Pl)sen(f — P)Qda
Thus

(2.9) /N o(1f — Pl Qdz = / o1f — P Q.

Let H(t) = ¢(|P(t) — f(¢)|)Q(t) and consider the sets
Uy=Nn{teB:P(t)>0},U,=Nn{te B: P(t) <0},
Us=LNn{te B:P(t) >0}, Uy=LnNn{te B:P(t) <0}.
Then, by (2.9), we get

/ Hdzr = / Hdx
U,uU2 UsuU4

(2.10) Hdx— | Hder= | Hdrx— | Hdx.
U1 Uy Us Us

and therefore

Due to the monotonicity of ¢, we have

/B S(PIQldr < / S(1P = I+ )@l d

and using (1.1) we get
[ etp=sriiialds < a, [ cp-shildeea, [ ofiQlds -
B B B

A/, IHIderA«p/BsOOfDIQIdm:

U U
=1

A (3
A A L
¢;/Ui |H|dx + <p/BSO(’me\dx S+ 1)

4
Now, we will find an upper bound of Iy = Y [, |H|dz.
. 1 k2

1=
Note that we have |P — f| < |f| on U; and Uy. Next, since the mono-
tonicity of (p, we obtain

/ ]H|da;—/ Hlde+ | |H|de <
U1UUy Uy Uy

(2.11)
/U S(DIQ dr + / S(fDIQl dz < 2 /B S(1)1Q| dz.
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Since sgn@ = sgnP, from (2.10) and (2.11), we get

\H]| dz + |H|dx:/(—H)dac+ H dz =
Us Us

Ua Us

(2.12) Hdx— | Hdx= |H|dx + |H|dx =
U1 Us Uy Uy

[ s <2 [ prhielas
U,uU4 B
Therefore I; <4 [, ¢(|f])|Q| dz and

2.13) [ etPhiQias <5, [ csbialds

Now if @ € TI"™ satisfies Q(t)P(t) < 0 we proceed in an analogous way
to obtain (2.12), then

|H|dx + |H|dx= | Hdr— [ Hdzr=
Uz Us U2 Us

— | Hdx+ | Hdzxr= |H| dx + |H|dx =
U1 U4 U1 U4

[ s <2 [ esialar
UrUU4 B
and thus

(2.14) /BSO(|P|)|QW9C < 5Aso/390(!f|)!Q|dx

for () € II"™ such that Q(¢t)P(t) < 0.
Finally, (2.8) follows from (2.13) and (2.14) 0

The next corollary will be useful in the sequel.

Corollary 2.5. Let ¢ € S, ®(x) = [, ¢(t)dt and let f € L*(B).
If P is the best polynomial approximation of f € L*(B), then

(2.15) | #PDIPIdr < 58,1Pl [ o(l7) .

Proof. 1t follows for Q = P in (2.8) of Theorem 2.4 and employing
1P| < [|P]lo- O

Remark 2.6. In order to obtain Theorem 2.4 we only have used that the
polynomial P is a solution of (2.7) for f in L¥(B). Thus the inequality
(2.15) holds for any polynomial P that satisfies identity (2.7) and f
belonging to L¥(B).
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3. EXTENSION OF THE BEST POLYNOMIAL APPROXIMATION TO
L?(B)

In order to get a continuous extension of pe(f) for functions in the
bigger space L¥(B) we need the following auxiliary results. Throughout
this section we will consider ¢ € S and ®(z) = [ ¢(t) dt.

Lemma 3.1. Let f, be a sequence in L*(B), such that there exists
a constant C' that satisfies [ p(|fa])dx < C. Then {||P|s : P €
po(fn),mn=1,2,...} is bounded.

Proof. Using Corollary 2.5, we have

31 [ GPDIPIds < 58Pl [ c(10])do < 5N P,

for each P € pe(f,) and for every all n. Thus, using (1.2) we get
| 2P de < 50,C1P

Then, from Jensen’s inequality, we obtain

|B[<I><ﬁ/B|P|dx> S/B<1>(|P|)dx.

Now, since ||P||; is a norm which is equivalent to || P||s, for P € 1",
we obtain for a suitable constant K,

K C
(Pl ) < 502 |Pc
B ‘1B

Thus taking into account that @;x) goes to 0o as x tends to oo the

lemma is proved. Il

Lemma 3.2. Let f,, f be functions in L¥(B) such that

(3.2) / o(fa— f)dz — 0

as n — oo.
Also let g,, g be measurable functions such that |g,| < C for all n and
Jn — g a.e. asn — oo. Then there exists a subsequence ny such that

(3.3) / o Fo Vg Az — / o(1f)g dz

as k — oo.

Proof. Since ¢ is a non decreasing function and ¢(x) > 0 for x >
0, there exists a subsequence f,, which converges to f a.e. We will
use now that the sequence ¢(|f,|) has an equiabsolutely continuous
integrals. That means, for every € > 0 there exists § > 0 such that
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Jpe(|fal) dz < e, for any E C B, |E| < 4, and for every n. This fact
follows at once from [, ¢(|f — fa|) dz — 0, and

/Es@(!fnb SAgo/BSO(’f—fn|)da:+A¢/Eg0(\f])d:B.

Now, by the Egorov’s theorem, given § > 0 there exists
F C B, |B — F| < ¢ such that the subsequence ¢(|f,,|)gn, uniformly
converges to ¢(|f|)g on F. Then

[ elltudan o~ [ oliihods =

| @ltuan =500 d+ [ (ol1fuuDgn. = o(1g) de

Now, using the uniform convergence of the sequence on F’ we have that
Ji. goes to 0 as k goes to oo. On the other hand, since we are dealing
with equiabsolutely continuous integrals we get |I| < ¢ for every k. O

Theorem 3.3. If f € L¥(B), then there exists P € II"™ such that

(3.4) /B o(1f — Pl)sen(f — P)Qdx =0,
for every Q € II™.

And

(3.5) / O(|P|) dz < K|[P / o)) de,

for a suitable constant K.

Proof. Set the sequence of functions f, = min(max(f, —n),n) which
are in L®(B). Then, by Theorem 2.3, there exists P, € ug(f,) such
that

(3.6) /B o(1fu — Pu)sgn(fu — P)Qda =0,

for every ) € 1I"™.
Observe that [, ¢(|f, — f|)dz — 0, as n — oo. Now, by Lemma 3.1,
the sequence || P,||« is bounded. Then there exists a subsequence P,
which uniformly converges on B to a polynomial P € II"™. Thus, by
Lemma 3.2, we get

0= [ Gllfo, = Pul)sen(f, — Po) Qs =

/B o(1f — P)sen(f — P)Qda,
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for every @ € II"™.
Now, by Remark 2.6 and (1.2) we also get

[ aPhds < [ o(P)IPlds < 50,Pl [ (7D do.

and the proof is completed. U

Now Theorem 3.3 allows us to extend the definition of the best ap-
proximation operator for functions in L¥(B).

Definition 2. For f € L¥(B) we set j,(f) for the set of polynomials
P € II™ that satisfy (3.4) and we refer to this set as the extended best
approximation operator.

Next, we list some properties of this best approximation operator.

Theorem 3.4. If ® is a strictly convexr function, then there exists a
unique extended best polynomial approximation for every f € L¥(B).

Proof. For f € L¥(B) we consider Py, P, € p,(f), P # P», then

/ o(1f — Pi)sen(f — P)Q da =
(3.7) E

| el = Paiseaf = P)@dr =0,
for every @ € 1I™.

Set the polynomial R = P, — P, € II" and the pairwise disjoint sets
A={x € B: Py(z) > Pi(z)}

B={x € B: P(x)> P(z)}
C={xeB:Pl((x)= D)}

then AUBUC = B and p(C) = 0.

Since ® is a strictly convex function we have that ¢(|x|)sgn(x) is a
strictly increasing function. Consider R < 0 and f — P, < f — P, on
the set A, then

o(lf = Rl)sgn(f — P2) < o(|f — Pil)sgn(f — 1)
and thus

o(|f — Pil)sen(f — PR < o(|f — Pof)sgn(f — ) R.
Hence
35) [ ¢l1f = Pisen(s—P)Rds < [ o(1f - Pa)sgn(s — PR ds
A A
Analogously if R > 0 and f — P, < f — P, on the set B, then
o(|f = Pil)sen(f — PR < o(|f — Pof)sgn(f — ) R.
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Therefore
(3.9) / o(f — Pilysgn(f — P)Rdx < / (1 — Pal)sgn(f — PR
B B

Now, since P, and P, are continuous functions and P; # P, on B, then
w(A) > 0 or pu(B) > 0. Thus, at least one of the inequalities (3.8) or
(3.9) must be strict.

From (3.7), (3.8) and (3.9) we get

0= [ olIf = Pisen(f = P Rds =
/A@(\f — Py|)sgn(f — P)Rdx +/ o(|f — Pi|)sen(f — P1)Rdx <

B

/A o(1f — Pal)sgn(f — P)Rda + / o(1f — Pal)sen(f — Py)Rdz =

B

/BSO(\f — Py|)sen(f — Py)Rdx = 0,

which is a contradiction and the proof is completed.

Proposition 3.5. For any f € L¥(B) it satisfies pu,(f +P) = p(f) +
P for all P € TI™.

Proof. Tt follows directly from the definition of the extended best ap-
proximation operator ju,(f). O

Theorem 3.6. Let ® be a strictly convex function and h,,h € L¥(B)
such that

(3.10) / o(|hn — h])dz — 0 as n — oco.
B

Then py(hy) — pp(h) as n — oco.

Proof. Set P, = p,(hy). By inequality (3.5) the sequence P, is uni-
formly bounded. We consider a subsequence P,, which converges to a
polynomial P. Now, we select a subsequence of h,, , which will be also
called by h,, , that converges to h a.e; we also have, for any @) € II"™,

B1) [ ol — PuDsgalin, — P)Qdz =0,
B
Now, by Lemma 3.2, we get
(3.12) / o(|h — P|)sgn(h — P)Q dx = 0,
B

and taking into account Theorem 3.4, P = pu,(f) and the whole se-
quence P, converges to P. Thus the proof is completed. Il
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