EXTENDED BEST POLYNOMIAL APPROXIMATION OPERATOR IN ORLICZ SPACES

SONIA ACINAS¹, SERGIO FAVIER² AND FELIPE ZÓ³

ABSTRACT. In this paper we consider the best polynomial approximation operator, defined in an Orlicz space $L^{\Phi}(B)$, and its extension to $L^{\varphi}(B)$, where φ is the derivative function of Φ . A characterization of these operators and several properties are obtained.

Keywords and Phrases. Orlicz Spaces, Best Polynomial Φ -Approximation Operators, Extended Best Polynomial Approximation from L^{Φ} to L^{φ} 2010 Mathematical Subject Classification. Primary 41A10. Secondary 41A50, 41A45

1. INTRODUCTION

In this paper we set \Im for the class of all continuous and nondecreasing functions φ defined for all real number $t \ge 0$, with $\varphi(0^+) = 0$, $\varphi(t) \to \infty$ as $t \to \infty$ and $\varphi(t) > 0$ for x > 0. We also assume a Δ_2 condition for the functions φ , which means that there exists a constant $\Lambda = \Lambda_{\varphi} > 0$ such that $\varphi(2a) \le \Lambda \varphi(a)$ for all $a \ge 0$. Now given $\varphi \in \Im$ we consider $\Phi(x) = \int_0^x \varphi(t) dt$. Observe that

Now given $\varphi \in \mathfrak{S}$ we consider $\Phi(x) = \int_0^{\infty} \varphi(t) dt$. Observe that $\Phi: [0, \infty) \to [0, \infty)$ is a convex function such that $\Phi(a) = 0$ iff a = 0. For such a function Φ we have $\frac{\Phi(x)}{x} \to 0$ as $x \to 0$ and $\frac{\Phi(x)}{x} \to \infty$ as $x \to \infty$, and according to [4], a function with this property is called an N function. Observe that the function φ satisfies a Δ_2 condition if and only if the function Φ satisfies a Δ_2 condition.

If $\varphi \in \Im$ then it satisfies a Δ_2 condition. Thus the next inequality holds

(1.1)
$$\frac{1}{2}(\varphi(a) + \varphi(b)) \le \varphi(a+b) \le \Lambda_{\varphi}(\varphi(a) + \varphi(b))$$

for every $a, b \ge 0$.

Also note that the Δ_2 condition on Φ implies

(1.2)
$$\frac{x}{2\Lambda_{\omega}}\varphi(x) \le \Phi(x) \le x\varphi(x),$$

for every $x \ge 0$.

Let B be a bounded measurable set in \mathbb{R}^n . If $\varphi \in \mathfrak{S}$, we denote by $L^{\varphi}(B)$ the class of all Lebesgue measurable functions f defined on \mathbb{R}^n such that $\int_B \varphi(t|f|) dx < \infty$ for some t > 0 and where dx denotes

This paper was supported by CONICET and UNSL grants.

the Lebesgue measure on \mathbb{R}^n . Note that as $\varphi \in \mathfrak{S}$ and it satisfies a Δ_2 condition then $L^{\varphi}(B)$ is the space of all measurable functions f defined on \mathbb{R}^n such that $\int_B \varphi(|f|) dx < \infty$. For the convex function Φ , $L^{\Phi}(B)$ is the classical Orlicz space very well studied in [4] and [5].

Let Π^m be the space of algebraic polynomials, defined on \mathbb{R}^n , of degree at most m. Then a polynomial $P \in \Pi^m$ is called a best approximation of $f \in L^{\Phi}(B)$ if and only if

(1.3)
$$\int_{B} \Phi(|f-P|) \, dx = \inf_{Q \in \Pi^{m}} \int_{B} \Phi(|f-Q|) \, dx.$$

Definition 1. For $f \in L^{\Phi}(B)$ we set $\mu_{\Phi}(f)$ for the set of all polynomials P that satisfy (1.3).

In the sequel we also refer to $\mu_{\Phi}(f)$ as the multivalued operator defined for functions in $L^{\Phi}(B)$ and images on Π^m .

In this paper we study the nature of this best polynomial approximation for functions in $L^{\Phi}(B)$ and we extend, in a continuous way, the definition of best polynomial approximation for functions belonging to $L^{\varphi}(B)$ where $\varphi = \Phi'$. These results extend those obtained in [1] for the L^p case. In Section 2 we define the best polynomial approximation operator for each $f \in L^{\Phi}(B)$ and we characterize this best approximation in a similar way as it has done in [3] for functions of $L^{\Phi}(B)$ in the case that the approximation class is a lattice instead of the space of polynomials. We also get a strong type inequality for $f \in L^{\Phi}(B)$ which generalizes Theorem 2.1 in [2] where the extended best polynomial approximation operator is considered for functions in $L^{p}(B)$. In Section 3 we use this inequality to extend the best polynomial approximation from $L^{\Phi}(B)$ to $L^{\varphi}(B)$, where $\varphi = \Phi'$. This is done in an easier way than the one developed in [1], where the existence of the extension is proved without using the inequality in Theorem 2.4. At the end of this section, we prove the uniqueness and a continuity property for the extended best polynomial approximation of $f \in L^{\varphi}(B)$ for a strictly increasing functions $\varphi \in \mathfrak{S}$.

2. Existence and uniqueness of the best polynomial approximation operator in $L^{\Phi}(B)$

For $P \in \Pi^m$ we set $||P||_{\infty} = \max_{x \in B} |P(x)|$ and $||P||_1 = \int_B |P| dx$. We begin with the existence of the best polynomial approximation operator of functions in $L^{\Phi}(B)$. We start with the next lemma.

Lemma 2.1. Let $\varphi \in \mathfrak{S}$, $\Phi(x) = \int_0^x \varphi(t) dt$ and let P_n be a sequence in Π^m , such that there exists a constant C that satisfies $\int_B \Phi(|P_n|) dx \leq C$. Then, the sequence P_n is uniformly bounded.

Proof. From Jensen's inequality we have

(2.1)
$$|B|\Phi\left(\frac{1}{|B|}\int_{B}|P_{n}|\,dx\right) \leq \int_{B}\Phi(|P_{n}|)\,dx \leq C.$$

Then, since $||P||_1$ is equivalent to $||P||_{\infty}$, for $P \in \Pi^m$ and using the Δ_2 condition on Φ , we obtain

$$\Phi(\|P_n\|_{\infty}) \le M,$$

for some constant M. Then, as $\Phi(x)$ goes to ∞ when x goes to ∞ the lemma follows.

The next two theorems follow standard techniques. However, for the sake of completeness, detailed proofs of them are included.

Theorem 2.2. Let $\varphi \in \mathfrak{S}$, $\Phi(x) = \int_0^x \varphi(t) dt$ and let $f \in L^{\Phi}(B)$. Then, there exists $P \in \Pi^m$ such that

$$\int_{B} \Phi(|f-P|) \, dx = \inf_{Q \in \Pi^{m}} \int_{B} \Phi(|f-Q|) \, dx.$$

Proof. Let $I = \inf_{Q \in \Pi^m} \int_B \Phi(|f - Q|) dx$, then there exists a sequence $\{P_n\}_{n\in\mathbb{N}}\subset\Pi^m$ such that

(2.2)
$$\int_{B} \Phi(|f - P_{n}|) \, dx \to I \text{ as } n \to \infty.$$

Due to the monotonicity and convexity of Φ on $[0, \infty)$, we get

$$\Phi\left(\frac{|P_n|}{2}\right) \le \Phi\left(\frac{1}{2}|P_n - f| + \frac{|f|}{2}\right) \le \frac{1}{2}\Phi(|P_n - f|) + \frac{1}{2}\Phi(|f|).$$

Thus

$$\int_{B} \Phi\left(\frac{|P_n|}{2}\right) dx \leq \frac{1}{2} \int_{B} \Phi(|P_n - f|) dx + \frac{1}{2} \int_{B} \Phi(|f|) dx,$$

and then

(2.3)
$$2\int_{B}\Phi\left(\frac{|P_{n}|}{2}\right) dx \leq \int_{B}\Phi(|f|) dx + I + 1.$$

Now, Lema 2.1 implies $||P_n||_{\infty} \leq K$. Hence, there exists a subsequence $\{P_{n_k}\} \subseteq \{P_n\}_{\{n \in \mathbb{N}\}}$ such that $\{P_{n_k}\}$ converges uniformly on Π^m . Let $P = \lim_{n_k \to \infty} P_{n_k}$. Since Φ satisfies the Δ_2 condition we have

$$\Phi(|f - P_{n_k}|) \le \Lambda_{\Phi}(\Phi(|f|) + \Phi(|P_{n_k}|)) \le \Lambda_{\Phi}(\Phi(|f|) + \Phi(K)).$$

Then, by Lebesgue Dominated Convergence Theorem, we have I = $\int_{B} \Phi(|f-P|) \, dx.$

The next theorem gives a characterization of the best polynomial approximation of functions in $L^{\Phi}(B)$.

Theorem 2.3. Let $\varphi \in \mathfrak{S}$, $\Phi(x) = \int_0^x \varphi(t) dt$ and let $f \in L^{\Phi}(B)$. Then $P \in \Pi^m$ is in $\mu_{\Phi}(f)$ if and only if

(2.4)
$$\int_{B} \varphi(|f-P|) \operatorname{sgn}(f-P) Q \, dx = 0,$$

for every $Q \in \Pi^m$.

Proof. For P in $\mu_{\Phi}(f)$ and $Q \in \Pi^m$ we set

$$F_Q(\varepsilon) = \int_B \Phi(|f - P + \varepsilon Q|) \, dx.$$

Next we prove that F_Q is a convex function defined on $[0, \infty)$. For $a, b \ge 0$ such that a + b = 1, we have

$$F_Q(a\epsilon_1 + b\epsilon_2) = \int_B \Phi(|(a+b)(f-P) + (a\epsilon_1 + b\epsilon_2)Q|) \, dx \le \int_B \Phi(a|(f-P) + \epsilon_1Q| + b|(f-P) + \epsilon_2Q|) \, dx \le \int_B a\Phi(|(f-P)| + \epsilon_1Q|) \, dx + \int_B b\Phi(|(f-P)| + \epsilon_2Q|) \, dx = aF_Q(\epsilon_1) + bF_Q(\epsilon_2),$$

for every $\epsilon_1, \epsilon_2 \geq 0$. Then

(2.5)
$$F_Q(0) = \min_{[0,\infty)} F_Q(\epsilon),$$

and this identity holds if and only if $0 \leq F'_Q(0^+)$. Now, using the Mean Value Theorem we have

$$\frac{|\Phi(|f - P + \epsilon Q|) - \Phi(|f - P|)|}{\epsilon |Q|} \le |Q|(\varphi(|f - P|) + \varphi(|Q|)),$$

for $0 \leq \epsilon \leq 1$.

Then, since $|Q|(\varphi(|f - P|) + \varphi(|Q|))$ is an integrable function, we are allowed to differentiate inside the integral in the formula of $F_Q(\epsilon)$ and therefore

(2.6)
$$0 \le F'_Q(0^+) = \int_B \varphi(|f - P|) \operatorname{sgn}(f - P) Q \, dx,$$

for any $Q \in \Pi^m$.

Now for any polynomial $Q \in \Pi^m$ we take the polynomial -Q in (2.6) and this completes the proof.

The following result, similar to Theorem 2.1 in [2], provides us an inequality that we will need below.

Theorem 2.4. Let $\varphi \in \mathfrak{S}$, $\Phi(x) = \int_0^x \varphi(t) dt$ and let $f \in L^{\varphi}(B)$. Suppose the polynomial $P \in \Pi^m$ satisfies

(2.7)
$$\int_{B} \varphi(|f-P|) \operatorname{sgn}(f-P) Q \, dx = 0,$$

for every $Q \in \Pi^m$. Then

(2.8)
$$\int_{B} \varphi(|P|)|Q| \, dx \leq 5\Lambda_{\varphi} \int_{B} \varphi(|f|)|Q| \, dx,$$

for every $Q \in \Pi^m$ satisfying $\operatorname{sgn}(Q(t)P(t)) = (-1)^{\eta}$ at any $t \in B$ such that $Q(t)P(t) \neq 0$ and where $\eta = 0$ or $\eta = 1$.

Proof. Suppose first let $Q \in \Pi^m$ such that Q(t)P(t) > 0. Let $N = \{t \in B : f(t) > P(t)\}$ and $L = \{t \in B : f(t) \le P(t)\}.$ Then r

$$0 = \int_{N \cup L} \varphi(|f - P|) \operatorname{sgn}(f - P)Q \, dx = \int_{N} \varphi(|f - P|) \operatorname{sgn}(f - P)Q \, dx + \int_{L} \varphi(|f - P|) \operatorname{sgn}(f - P)Q \, dx$$

Thus

Τ hus

(2.9)
$$\int_{N} \varphi(|f-P|) Q \, dx = \int_{L} \varphi(|f-P|) Q \, dx.$$

Let $H(t) = \varphi(|P(t) - f(t)|)Q(t)$ and consider the sets $U_1 = N \cap \{t \in B : P(t) \ge 0\}, U_2 = N \cap \{t \in B : P(t) < 0\}, U_3 = L \cap \{t \in B : P(t) \ge 0\}, U_4 = L \cap \{t \in B : P(t) < 0\}.$ Then, by (2.9), we get

$$\int_{U_1 \cup U_2} H \, dx = \int_{U_3 \cup U_4} H \, dx$$

and therefore

(2.10)
$$\int_{U_1} H \, dx - \int_{U_4} H \, dx = \int_{U_3} H \, dx - \int_{U_2} H \, dx.$$

Due to the monotonicity of φ , we have

$$\int_{B} \varphi(|P|) |Q| \, dx \le \int_{B} \varphi(|P - f| + |f|) |Q| \, dx$$

and using (1.1) we get

$$\begin{split} \int_{B} \varphi(|P-f|+|f|)|Q| \, dx &\leq \Lambda_{\varphi} \int_{B} \varphi(|P-f|)|Q| \, dx + \Lambda_{\varphi} \int_{B} \varphi(|f|)|Q| \, dx = \\ \Lambda_{\varphi} \int_{\bigcup_{i=1}^{4} U_{i}}^{4} |H| \, dx + \Lambda_{\varphi} \int_{B} \varphi(|f|)|Q| \, dx = \\ \Lambda_{\varphi} \sum_{i=1}^{4} \int_{U_{i}}^{4} |H| \, dx + \Lambda_{\varphi} \int_{B} \varphi(|f|)|Q| \, dx = \Lambda_{\varphi}(I_{1}+I_{2}) \end{split}$$

Now, we will find an upper bound of $I_1 = \sum_{i=1}^{4} \int_{U_i} |H| dx$. Note that we have $|P - f| \leq |f|$ on U_1 and U_4 . Next, since the monotonicity of φ , we obtain

(2.11)
$$\int_{U_1 \cup U_4} |H| \, dx = \int_{U_1} |H| \, dx + \int_{U_4} |H| \, dx \leq \int_{U_1} \varphi(|f|) |Q| \, dx + \int_{U_4} \varphi(|f|) |Q| \, dx \leq 2 \int_B \varphi(|f|) |Q| \, dx.$$

Since $\operatorname{sgn} Q = \operatorname{sgn} P$, from (2.10) and (2.11), we get

(2.12)
$$\int_{U_2} |H| \, dx + \int_{U_3} |H| \, dx = \int_{U_2} (-H) \, dx + \int_{U_3} H \, dx = \int_{U_1} H \, dx - \int_{U_4} H \, dx = \int_{U_1} |H| \, dx + \int_{U_4} |H| \, dx = \int_{U_1 \cup U_4} |H| \, dx \le 2 \int_B \varphi(|f|) |Q| \, dx$$

Therefore $I_1 \leq 4 \int_B \varphi(|f|) |Q| dx$ and

(2.13)
$$\int_{B} \varphi(|P|)|Q| \, dx \le 5\Lambda_{\varphi} \int_{B} \varphi(|f|)|Q| \, dx.$$

Now if $Q \in \Pi^m$ satisfies Q(t)P(t) < 0 we proceed in an analogous way to obtain (2.12), then

$$\int_{U_2} |H| \, dx + \int_{U_3} |H| \, dx = \int_{U_2} H \, dx - \int_{U_3} H \, dx = -\int_{U_1} H \, dx + \int_{U_4} H \, dx = \int_{U_1} |H| \, dx + \int_{U_4} |H| \, dx = \int_{U_1 \cup U_4} |H| \, dx \le 2 \int_B \varphi(|f|) |Q| \, dx,$$

and thus

(2.14)
$$\int_{B} \varphi(|P|) |Q| \, dx \le 5\Lambda_{\varphi} \int_{B} \varphi(|f|) |Q| \, dx$$

for $Q \in \Pi^m$ such that Q(t)P(t) < 0. Finally, (2.8) follows from (2.13) and (2.14)

The next corollary will be useful in the sequel.

Corollary 2.5. Let $\varphi \in \mathfrak{F}$, $\Phi(x) = \int_0^x \varphi(t) dt$ and let $f \in L^{\Phi}(B)$. If P is the best polynomial approximation of $f \in L^{\Phi}(B)$, then

(2.15)
$$\int_{B} \varphi(|P|)|P| \, dx \leq 5\Lambda_{\varphi} \|P\|_{\infty} \int_{B} \varphi(|f|) \, dx.$$

Proof. It follows for Q = P in (2.8) of Theorem 2.4 and employing $|P| \leq ||P||_{\infty}$.

Remark 2.6. In order to obtain Theorem 2.4 we only have used that the polynomial P is a solution of (2.7) for f in $L^{\varphi}(B)$. Thus the inequality (2.15) holds for any polynomial P that satisfies identity (2.7) and f belonging to $L^{\varphi}(B)$.

3. Extension of the best polynomial approximation to $L^{\varphi}(B)$

In order to get a continuous extension of $\mu_{\Phi}(f)$ for functions in the bigger space $L^{\varphi}(B)$ we need the following auxiliary results. Throughout this section we will consider $\varphi \in \mathfrak{F}$ and $\Phi(x) = \int_0^x \varphi(t) dt$.

Lemma 3.1. Let f_n be a sequence in $L^{\Phi}(B)$, such that there exists a constant C that satisfies $\int_B \varphi(|f_n|) dx \leq C$. Then $\{||P||_{\infty} : P \in \mu_{\Phi}(f_n), n = 1, 2, ...\}$ is bounded.

Proof. Using Corollary 2.5, we have

(3.1)
$$\int_{B} \varphi(|P|) |P| \, dx \le 5\Lambda_{\varphi} \|P\|_{\infty} \int_{B} \varphi(|f_{n}|) \, dx \le 5C\Lambda_{\varphi} \|P\|_{\infty},$$

for each $P \in \mu_{\Phi}(f_n)$ and for every all n. Thus, using (1.2) we get

$$\int_{B} \Phi(|P|) \, dx \le 5\Lambda_{\varphi} C \|P\|_{\infty}.$$

Then, from Jensen's inequality, we obtain

$$|B|\Phi\left(\frac{1}{|B|}\int_{B}|P|\,dx\right) \leq \int_{B}\Phi(|P|)\,dx.$$

Now, since $||P||_1$ is a norm which is equivalent to $||P||_{\infty}$, for $P \in \Pi^m$, we obtain for a suitable constant K,

$$\Phi\left(\frac{K}{|B|}\|P\|_{\infty}\right) \le 5\Lambda_{\varphi}^{2}\frac{C}{|B|}\|P\|_{\infty}.$$

Thus taking into account that $\frac{\Phi(x)}{x}$ goes to ∞ as x tends to ∞ the lemma is proved.

Lemma 3.2. Let f_n , f be functions in $L^{\varphi}(B)$ such that

(3.2)
$$\int_{B} \varphi(|f_n - f|) \, dx \to 0$$

as $n \to \infty$.

Also let g_n , g be measurable functions such that $|g_n| \leq C$ for all n and $g_n \to g$ a.e. as $n \to \infty$. Then there exists a subsequence n_k such that

(3.3)
$$\int_{B} \varphi(|f_{n_k}|) g_{n_k} \, dx \to \int_{B} \varphi(|f|) g \, dx$$

as $k \to \infty$.

Proof. Since φ is a non decreasing function and $\varphi(x) > 0$ for x > 0, there exists a subsequence f_{n_k} which converges to f a.e. We will use now that the sequence $\varphi(|f_n|)$ has an equiabsolutely continuous integrals. That means, for every $\varepsilon > 0$ there exists $\delta > 0$ such that

 $\int_E \varphi(|f_n|) dx \leq \varepsilon$, for any $E \subset B$, $|E| \leq \delta$, and for every *n*. This fact follows at once from $\int_B \varphi(|f - f_n|) dx \to 0$, and

$$\int_{E} \varphi(|f_n|) \leq \Lambda_{\varphi} \int_{B} \varphi(|f - f_n|) \, dx + \Lambda_{\varphi} \int_{E} \varphi(|f|) \, dx.$$

Now, by the Egorov's theorem, given $\delta > 0$ there exists $F \subset B$, $|B - F| < \delta$ such that the subsequence $\varphi(|f_{n_k}|)g_{n_k}$ uniformly converges to $\varphi(|f|)g$ on F. Then

$$\begin{split} &\int_{B} \varphi(|f_{n_k}|) g_{n_k} \, dx - \int_{B} \varphi(|f|) g \, dx = \\ &\int_{B-F} (\varphi(|f_{n_k}|) g_{n_k} - \varphi(|f|) g) \, dx + \int_{F} (\varphi(|f_{n_k}|) g_{n_k} - \varphi(|f|) g) \, dx \\ &= I_k + J_k. \end{split}$$

Now, using the uniform convergence of the sequence on F we have that J_k goes to 0 as k goes to ∞ . On the other hand, since we are dealing with equiabsolutely continuous integrals we get $|I_k| < \varepsilon$ for every k. \Box

Theorem 3.3. If $f \in L^{\varphi}(B)$, then there exists $P \in \Pi^m$ such that

(3.4)
$$\int_{B} \varphi(|f-P|) \operatorname{sgn}(f-P) Q \, dx = 0,$$

 $\begin{array}{l} \textit{for every } Q \in \Pi^m. \\ \textit{And} \end{array}$

(3.5)
$$\int_{B} \Phi(|P|) \, dx \le K \|P\|_{\infty} \int_{B} \varphi(|f|) \, dx,$$

for a suitable constant K.

Proof. Set the sequence of functions $f_n = min(max(f, -n), n)$ which are in $L^{\Phi}(B)$. Then, by Theorem 2.3, there exists $P_n \in \mu_{\Phi}(f_n)$ such that

(3.6)
$$\int_{B} \varphi(|f_n - P_n|) \operatorname{sgn}(f_n - P_n) Q \, dx = 0,$$

for every $Q \in \Pi^m$.

Observe that $\int_B \varphi(|f_n - f|) dx \to 0$, as $n \to \infty$. Now, by Lemma 3.1, the sequence $||P_n||_{\infty}$ is bounded. Then there exists a subsequence P_{n_k} which uniformly converges on B to a polynomial $P \in \Pi^m$. Thus, by Lemma 3.2, we get

$$0 = \lim_{k \to \infty} \int_{B} \varphi(|f_{n_{k}} - P_{n_{k}}|) \operatorname{sgn}(f_{n_{k}} - P_{n_{k}}) Q \, dx = \int_{B} \varphi(|f - P|) \operatorname{sgn}(f - P) Q \, dx,$$

for every $Q \in \Pi^m$.

Now, by Remark 2.6 and (1.2) we also get

$$\int_{B} \Phi(|P|) \, dx \le \int_{B} \varphi(|P|) \, |P| \, dx \le 5\Lambda_{\varphi} \|P\|_{\infty} \int_{B} \varphi(|f|) \, dx,$$

he proof is completed.

and the proof is completed.

Now Theorem 3.3 allows us to extend the definition of the best approximation operator for functions in $L^{\varphi}(B)$.

Definition 2. For $f \in L^{\varphi}(B)$ we set $\mu_{\varphi}(f)$ for the set of polynomials $P \in \Pi^m$ that satisfy (3.4) and we refer to this set as the extended best approximation operator.

Next, we list some properties of this best approximation operator.

Theorem 3.4. If Φ is a strictly convex function, then there exists a unique extended best polynomial approximation for every $f \in L^{\varphi}(B)$.

Proof. For $f \in L^{\varphi}(B)$ we consider $P_1, P_2 \in \mu_{\varphi}(f), P_1 \neq P_2$, then

(3.7)
$$\int_{B} \varphi(|f - P_{1}|) \operatorname{sgn}(f - P_{1}) Q \, dx = \int_{B} \varphi(|f - P_{2}|) \operatorname{sgn}(f - P_{2}) Q \, dx = 0,$$

for every $Q \in \Pi^m$.

Set the polynomial $R = P_1 - P_2 \in \Pi^m$ and the pairwise disjoint sets

$$A = \{x \in B : P_2(x) > P_1(x)\}\$$

$$B = \{x \in B : P_1(x) > P_2(x)\}\$$

$$C = \{x \in B : P_1(x) = P_2(x)\}\$$

then $A \cup B \cup C = B$ and $\mu(C) = 0$.

Since Φ is a strictly convex function we have that $\varphi(|x|) \operatorname{sgn}(x)$ is a strictly increasing function. Consider R < 0 and $f - P_2 < f - P_1$ on the set A, then

$$\varphi(|f - P_2|)\operatorname{sgn}(f - P_2) < \varphi(|f - P_1|)\operatorname{sgn}(f - P_1)$$

and thus

$$\varphi(|f - P_1|)\operatorname{sgn}(f - P_1)R < \varphi(|f - P_2|)\operatorname{sgn}(f - P_2)R.$$

Hence

(3.8)
$$\int_{A} \varphi(|f - P_1|) \operatorname{sgn}(f - P_1) R \, dx \le \int_{A} \varphi(|f - P_2|) \operatorname{sgn}(f - P_2) R \, dx.$$

Analogously if R > 0 and $f - P_1 < f - P_2$ on the set B, then

$$\varphi(|f - P_1|)\operatorname{sgn}(f - P_1)R < \varphi(|f - P_2|)\operatorname{sgn}(f - P_2)R.$$

Therefore

(3.9)
$$\int_{B} \varphi(|f-P_{1}|) \operatorname{sgn}(f-P_{1}) R \, dx \leq \int_{B} \varphi(|f-P_{2}|) \operatorname{sgn}(f-P_{2}) R \, dx.$$

Now, since P_1 and P_2 are continuous functions and $P_1 \neq P_2$ on B, then $\mu(A) > 0$ or $\mu(B) > 0$. Thus, at least one of the inequalities (3.8) or (3.9) must be strict.

From (3.7), (3.8) and (3.9) we get

$$\begin{split} 0 &= \int_{B} \varphi(|f - P_{1}|) \operatorname{sgn}(f - P_{1}) R \, dx = \\ &\int_{A} \varphi(|f - P_{1}|) \operatorname{sgn}(f - P_{1}) R \, dx + \int_{B} \varphi(|f - P_{1}|) \operatorname{sgn}(f - P_{1}) R \, dx < \\ &\int_{A} \varphi(|f - P_{2}|) \operatorname{sgn}(f - P_{2}) R \, dx + \int_{B} \varphi(|f - P_{2}|) \operatorname{sgn}(f - P_{2}) R \, dx = \\ &\int_{B} \varphi(|f - P_{2}|) \operatorname{sgn}(f - P_{2}) R \, dx = 0, \end{split}$$

which is a contradiction and the proof is completed.

Proposition 3.5. For any $f \in L^{\varphi}(B)$ it satisfies $\mu_{\varphi}(f+P) = \mu_{\varphi}(f) + P$ for all $P \in \Pi^m$.

Proof. It follows directly from the definition of the extended best approximation operator $\mu_{\varphi}(f)$.

Theorem 3.6. Let Φ be a strictly convex function and $h_n, h \in L^{\varphi}(B)$ such that

(3.10)
$$\int_{B} \varphi(|h_n - h|) \, dx \to 0 \text{ as } n \to \infty.$$

Then $\mu_{\varphi}(h_n) \to \mu_{\varphi}(h)$ as $n \to \infty$.

Proof. Set $P_n = \mu_{\varphi}(h_n)$. By inequality (3.5) the sequence P_n is uniformly bounded. We consider a subsequence P_{n_k} which converges to a polynomial P. Now, we select a subsequence of h_{n_k} , which will be also called by h_{n_k} , that converges to h a.e; we also have, for any $Q \in \Pi^m$,

(3.11)
$$\int_{B} \varphi(|h_{n_{k}} - P_{n_{k}}|) \operatorname{sgn}(h_{n_{k}} - P_{n_{k}}) Q \, dx = 0.$$

Now, by Lemma 3.2, we get

(3.12)
$$\int_{B} \varphi(|h-P|) \operatorname{sgn}(h-P) Q \, dx = 0,$$

and taking into account Theorem 3.4, $P = \mu_{\varphi}(f)$ and the whole sequence P_n converges to P. Thus the proof is completed.

10

References

- [1] H. Cuenya, Extension of the operator of best polynomial approximation in $L^p(B)$. J. Math. Anal. Appl., **376** (2011) 565-575.
- [2] H. Cuenya, S. Favier, F.Zó, Inequalities in L^{p-1} for the extended L^p best approximation operator. J. Math. Anal. Appl., **393** (2012) 80-88.
- [3] S. Favier, F. Zó, Extension of the best approximation operator in Orlicz spaces and weak-type inequalities. Abstract and Applied Analysis, 6 (2001) 101-114.
- [4] M.A. Krasnosel'skii, J.B. Rutickii, Convex Functions and Orlicz Spaces. P. Noordhoff, Groningen, 1961, translated from the first Russian edition by Leo F. Boron. MR 23A4016. Zbl 095.09103., Moskva, 1958.
- [5] M.M Rao, Z.D. Ren, Theory of Orlicz Spaces. Marcel Dekker, New York, 1991.

¹ DEPARTAMENTO DE MATEMÁTICA, FACULTAD DE CIENCIAS EXACTAS NA-TURALES, UNIVERSIDAD NACIONAL DE LA PAMPA, (6300) SANTA ROSA, LA PAMPA, ARGENTINA

E-mail address: sonia.acinas@gmail.com

² Corresponding author. Instituto de Matemática Aplicada San Luis, CONICET and Departamento de Matemática, Universidad Nacional de San Luis, (5700) San Luis, Argentina. T.E. 54 266 4459649

E-mail address: sfavier@unsl.edu.ar

 3 Instituto de Matemática Aplicada San Luis, CONICET and Departamento de Matemática, Universidad Nacional de San Luis, (5700) San Luis, Argentina

E-mail address: fzo@unsl.edu.ar