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1 Introduction

Let (Y, d) be a compact metric space. A map L from Y into itself is a Lips-
chitz contraction on (Y, d) if there exists a constant c, 0 < c < 1, such that
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d(L(x), L(y)) ≤ cd(x, y), for all x, y ∈ Y . The smallest of all such constants is
called Lipschitz constant of L. Let L be a Lipschitz contraction on (Y, d). Since
Y is a complete metric space, it is well known that L admits a unique fixed
point y ∈ Y , meaning that L(y) = y. This result is known as the Contraction
Mapping Principle or the Banach Fixed Point Theorem.

In [6], Hutchinson generalized the Banach Fixed Point Theorem to a fi-
nite family S = {σ1, . . . , σN} of Lipschitz contractions on (Y, d). Precisely, he
proved that there is a unique compact subset X ⊂ Y which is invariant under
S, meaning that

X =

N⋃
i=1

σi(X).

A finite family of Lipschitz contractions on (Y, d) is called an iterated function
system (IFS) on Y , and the compact invariant subset X described above is
called the self-similar fractal set, or attractor set, associated to the IFS. More-
over, Hutchinson showed that the attractor set can be realized as the support
of a Borel probability measure on Y . This measure, which we denote by µ,
satisfies the fixed point relation

µ(·) =

N∑
i=1

1

N
µ(σ−1i (·)),

and is often referred to as the Hutchinson measure. It is the unique fixed point
of an appropriate Lipschitz contraction on the complete metric space of Borel
probability measures on Y equipped with the classical Kantorovich metric H
given by

H(µ, ν) = sup
f∈Lip1(Y )

{∣∣∣∣∫
Y

fdµ−
∫
Y

fdν

∣∣∣∣} , (1)

where Lip1(Y ) = {f : Y → R : |f(x)− f(y)| ≤ d(x, y) for all x, y ∈ Y }.
In [7,8], Jorgensen generalized the Hutchinson measure to operator-valued

measures. He considered the Hilbert space L2(X,µ), where X ⊂ Y is the
attractor associated to the IFS and µ is the Hutchinson measure on Y , and
showed that there exists a unique projection-valued measure, E, defined on
the Borel sigma algebra of X taking values in the projections on L2(X,µ) such
that

E(·) =

N∑
i=1

SiE(σ−1i (·))S∗i , (2)

for certain isometries Si on H and their adjoints S∗i .
In [4,5], Davison developed an alternative approach to proving this result.

In particular, given the Hilbert space H = L2(X,µ) (or more generally, a
Hilbert space H which admits a representation of the Cuntz algebra on N
generators), he considered the space of projection-valued measures from the
Borel sigma algebra of X into the projections on H, and showed that this
space can be made into a complete an bounded metric space via a generalized
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Kantorovich metric. Davison used this result and the Fixed Point Theorem to
prove that there exists a unique projection-valued measure E satisfying (2).

The notions of the attractor set and the Hutchinson measure can be gen-
eralized to a countable iterated function system (CIFS) (see [1, 9]). Precisely,
given a countable family S = {σi : i ∈ N} of Lipschitz contractions on a
compact metric space (Y, d) such that sup{ri : i ∈ N} < 1, where ri is the
Lipschitz constant associated to σi, there exists a unique compact invariant
set X ⊂ Y such that

X =
⋃
i∈N

σi(X). (3)

This unique invariant set said to be the attractor set associated to the CIFS.
Furthermore, if P = {ρi}i∈N is a probability sequence, then there exists a
unique invariant Borel probability measure µ on Y , called the Generalized
Hutchinson measure associated to (S,P), such that

µ(·) =

∞∑
i=1

ρiµ ◦ σi−1(·), (4)

and supp(µ) = X (see [2]). Note that Bandt [1] showed that the attractor set
associated to the CIFS is not necessarily compact provide that (Y, d) not is a
compact metric space.

The main goal of this paper is to study a generalization of above result to
projection-valued measures. Although the techniques used in our proofs are
similar than those used in [4], the iterated function system with countably
many of Lipschitz contractions setting requires highly more effort.

The rest of the paper is structured as follows. In Section 2, we give all
assumptions and preliminary concepts which we need later. In Section 3, we
consider a CIFS, say S = {σi : i ∈ N}, a probability sequence P and the
Hilbert space L2(X,µ), where X ⊂ Y is the attractor associated to S and µ
is the Generalized Hutchinson measure associated to (S,P). Then, show that
there exists a map on the space of projection-valued measures from the Borel
sigma algebra of X into the projections on L2(X,µ). In Section 4, we prove
that the aforementioned map is a Lipschitz contraction on a complete metric
space via the generalized Kantorovich metric. As a consequence, we see that
there exists a unique projection-valued measure for S such that

E(·) =

∞∑
i=1

SiE(σ−1i (·))S∗i ,

for certain isometries Si on L2(X,µ) and their adjoints S∗i .

2 Preliminaries

In this section we recall assumptions and preliminary concepts will be needed
throughout the paper.
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Let (X, d) be a compact metric space and let (H, 〈·, ·〉) be an arbitrary
Hilbert space. We denote by B(X) the Borel sigma algebra of X and by B(H)
space of bounded linear operators on H which are orthogonal projections (i.e.,
self-adjoint and idempotent operators).

Definition 1 A projection-valued measure with respect to the pair (X,H) is
a map F : B(X)→ B(H) such that:

1. F (∆) is a projection in B(H) for all ∆ ∈ B(X);
2. F (∅) = 0 and F (X) = idH (the identity operator on H);
3. F (∆1 ∩ ∆2) = F (∆1)F (∆2) for all ∆1, ∆2 ∈ B(X) (where the product

operation F (∆1)F (∆2) is the operator composition in B(H));
4. If {∆n}∞n=1 is a sequence of pairwise disjoint sets in B(X), and if φ, ψ ∈ H,

then 〈
F

(⋃
n∈N

∆n

)
φ, ψ

〉
=

∞∑
n=1

〈F (∆n)φ, ψ〉 .

Lemma 1 [3, Lemma 1.9, p. 257] Let E be a projection-valued measure with
respect to the pair (X,H). For all φ, ψ ∈ H and ∆ ∈ B(X),

Eφ,ψ(∆) = 〈E(∆)φ, ψ〉

defines a countably additive measure on B(X) with total variation less than or
equal to ‖φ‖H‖ψ‖H. Moreover, Eφ,ψ(·) = Eψ,φ(·).

Remark 1 If φ ∈ H, Eφ,φ(·) is a positive measure with total mass equal to
‖φ‖2.

Let P (X) be the space of projection-valued measures from B(X) into the
projections on H. Define the generalized Kantorovich metric ρ on P (X) by

ρ(E,F ) = sup
f∈Lip1(X)

{∥∥∥∥∫ fdE −
∫
fdF

∥∥∥∥} (5)

where ‖·‖ denotes the operator norm in B(H), E and F are arbitrary members
of P (X), and

∫
fdE is the unique bounded operator on H that satisfies〈(∫
fdE

)
φ, ψ

〉
=

∫
X

fdEφ,ψ for all φ, ψ ∈ H.

Recently, T. Davison [4] proved the following property of the metric space
(P (X), ρ).

Theorem 1 [4, Theorem 2.11] Let (X, d) be a compact metric space. Then
the metric space (P (X), ρ) is complete.
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Let S = {σi : i ∈ N} be a CIFS on (Y, d) with Lipschitz constants ri.
Assume r := sup{ri : i ∈ N} < 1 and let X ⊂ Y be the attractor associated
to the CIFS satisfying σi(X) ∩ σj(X) = ∅ for i 6= j.

We denote by M(X) the space of Borel probability measures on X.
From now on, P = {ρi}i∈N is a probability sequence and µ ∈M(X) is the

Generalized Hutchinson measure associated to (S,P). Additionally, σ : X →
X is a Borel measurable function such that

(σ ◦ σj)(x) = x, for all x ∈
⋃
i∈N

σi(X), j ∈ N. (6)

As

µ

(
X \

⋃
i∈N

σi(X)

)
= 1−

∞∑
i=1

ρiµ(σ−1i (σi(X))) = 0, (7)

we have
σ ◦ σj = idX , j ∈ N. (8)

The following theorem shows a simple manner to generate a CIFS from a
IFS, under the above hypotheses.

Theorem 2 Let S = {τ1, . . . , τn} be a IFS of injective maps on (Y, d) such
that the attractor set X associated to S satisfies

τi(X) ∩ τj(X) = ∅ for i 6= j. (9)

Let F = {σi : i ∈ N} be the family given by σi = τpn ◦ τq+1 if i − 1 is of the
form p(n− 1) + q with p ∈ N ∪ {0} and 0 ≤ q < n− 1. Then F is a CIFS on
(Y, d) such that

(a) Lipschitz constants si associated to σi verifies sup{si : σi ∈ F} < 1,
(b) σi(X) ∩ σj(X) = ∅ for i 6= j,
(c) the attractor set associated to F is X.

Proof It is easy to see that F is a CIFS on (Y, d) satisfying (a).
Now assume i 6= j and let i− 1 = p(n− 1) + q and j − 1 = p′(n− 1) + q′ with
p, p′ ∈ N ∪ {0} and 0 ≤ q, q′ < n− 1. When p = p′, q 6= q′ and thus

σi(X) ∩ σj(X) = (τpn ◦ τq+1)(X) ∩ (τpn ◦ τq′+1)(X) = ∅,

where the last equality is due fact that τpn is a injective map, q+1 6= q′+1, and
(9). Suppose p 6= p′. Without loss of generality assume p < p′. Since q+1 < n,
from (9) we have τq+1(X) ∩ (τp

′−p
n ◦ τq′+1)(X) = ∅. Therefore, the injectivity

of τpn implies

σi(X) ∩ σj(X) = (τpn ◦ τq+1)(X) ∩ (τpn ◦ τp
′−p
n ◦ τq′+1)(X) = ∅.

This completes the proof of (b).
A straightforward computation shows that⋃

i∈N
σi(X) ⊂ X,
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because X is a compact set and σi(X) ⊂ X, i ∈ N.
Now, let x ∈ X. By [6, (3) Theorem (iii)], there exists a sequence {αi}i∈N ∈
{1, . . . , n}N such that

{x} =
⋂
i∈N

(τα1
◦ · · · ◦ ταi

)(X).

We complete the proof by considering two cases:
(i) αi = n for all i,
(ii) αi < n for some i.
Assume (i) and let y ∈ X be the fixed point of τn,

M = max{d(τq+1(y), y) : 0 ≤ q < n− 1},

and j ∈ N. As (τα1
◦ · · · ◦ ταi

)(y) = τ in(y) = y for all i, from [6, (3) Theorem
(iv)] it follows that x = y. Let rn be the Lipschitz constant associated to τn.
Since j − 1 = p(n− 1) + q with p ∈ N ∪ {0} and 0 ≤ q < n− 1, then

d(σj(y), x) = d((τpn ◦ τq+1)(y), τpn(y)) ≤ rpnd(τq+1(y), y) ≤ rpnM,

and so

x = lim
j→∞

σj(y) ∈
⋃
i∈N

σi(X).

Now suppose (ii) and let j = min{i ∈ N : αi < n}. If j = 1, then τα1 = σα1 ,
and thus

x ∈ σα1(X) ⊂
⋃
i∈N

σi(X).

If j ≥ 2, then τα1 ◦ · · · ◦ ταj = τ j−1n ◦ ταj with αj < n, and therefore

x ∈ (τα1 ◦ · · · ◦ ταj )(X) = σ(j−1)(n−1)+αj
(X) ⊂

⋃
i∈N

σi(X).

Consequently, X is the attractor set associated to F , and the proof of (c) is
complete. ut

Remark 2 Note that if S is a CIFS of injective maps, then every σj : (X, d)→
(σj(X), d) is a continuous bijection. So, the function σ : X → X can be
constructed as follows: if x ∈ σj(X), j ∈ N, let σ(x) = σ−1j (x); otherwise,
let σ(x) = x. Further, it is easy to see that σ is a Borel measurable function.
Indeed, as (X, d) is a compact space and (σj(X), d) is a Hausdorff space, then
σj : (X, d)→ (σj(X), d) is a homeomorphism. Now, the equality

σ−1(A) =

X \ ⋃
j∈N

σj(X)

 ∩A
 ∪ ⋃

j∈N
σj(A), A ⊂ X,

completes the proof.
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Next, we offer an example of a possible scenario of work.

Example 1 Let Y = [0, 1] be with the standard metric on R, and we consider
the IFS {τ1, τ2} given by

τ1(x) =
1

3
x and τ2(x) =

1

3
x+

2

3
.

It is well known that the Cantor ternary set, say X, is the attractor of {τ1, τ2}.
Since τ1(X)∩τ2(X) = ∅, from Theorem 2 we obtain that the family {σi : i ∈ N}
given by

σi(x) =
1

3i
x+

3i−1 − 1

3i−1
.

is a CIFS satisfying (a)− (c) of Theorem 2.
Finally, the map σ : X → X defined by

σ(x) = 3ix− (3i − 3), x ∈
[

3i−1 − 1

3i−1
,

3i − 2

3i

]
∩X,

and σ(1) = 1, is a Borel measurable function satisfying (6).

In the sequel, we consider the Hilbert space H = L2(X,µ), and define
Si, S

∗
i : H → H, i ∈ N, by

Siφ = (φ ◦ σ)
1
√
ρi

1σi(X) and S∗i φ =
√
ρi(φ ◦ σi), φ ∈ H, (10)

where 1A denotes the characteristic function of a set A.

3 A map on (P (X), ρ)

Let Φ : P (X)→ P (X) be the map given by

Φ(E)(·) =

∞∑
i=1

SiE(σ−1i (·))S∗i , (11)

where Si, S
∗
i , and σi are given in Section 2.

The main aim of this section is to prove that the map Φ is well defined. For
this purpose, we need a list of theoretical results which we will show in what
follows. First, it is worth remembering the Lebesgue’s Monotone Convergence
Theorem for Series.

Lemma 2 [11, p.175] Let {aik}(i,k)∈N2 be a double sequence of real numbers
such that 0 ≤ aik ≤ ai(k+1), for all (i, k) ∈ N2. Then

lim
k→∞

∞∑
i=1

aik =

∞∑
i=1

lim
k→∞

aik.

Next proposition will be useful in what follows.
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Proposition 1 Let {νi}i∈N be a sequence of finite measures on B(X) and ν
be a finite measure on B(X) such that ν(∆) =

∑∞
i=1 νi(∆) for all ∆ ∈ B(X).

If φ is ν−integrable function on X, then φ is νi−integrable function on X for
all i, and ∫

X

φ dν =

∞∑
i=1

∫
X

φ dνi.

Proof It is clear that the proposition holds for characteristic functions. Then,
it is also true for non-negative simple functions due to the linearity of the
integral. Now, let φ be a non-negative ν-measurable function. Then there exists
a sequence of non-negative simple functions {φk} such that φk ↗ φ, as k →∞.
According to the Beppo Levi Theorem we have∫

X

φ dν = lim
k→∞

∞∑
i=1

∫
X

φk dνi.

Thus, Lemma 2 with aik =
∫
X
φk dνi implies

∫
X

φ dν =

∞∑
i=1

∫
X

φ dνi.

Finally, the general case of the real and complex functions φ also remains valid
since φ = φ+ − φ− and φ = Re(φ) + iIm(φ), respectively. ut

Here below, we show the change of variables formula for integrals.

Theorem 3 [10, Theorem 1.19] Suppose ς : X → X is a Borel function, ν
is a Borel measure on X and f is a non-negative Borel function on X. Then∫

ς(X)

f d(ν ◦ ς−1) =

∫
X

(f ◦ ς) dν,

where ν ◦ ς−1 is the pushforward measure defined by (ν ◦ ς−1)(∆) = ν(ς−1(∆)),
∆ ∈ B(X).

Remark 3 The above theorem remains valid if f is a real ν−integrable function
on X.

The following Theorem generalizes [4, Theorem 1.5].

Theorem 4 The maps Si, i ∈ N, are isometries, and the maps S∗i , i ∈ N are
their adjoints. Moreover, these maps and their adjoints satisfy the relations:

(a) S∗i Sj = δijidH, for i, j ∈ N;
(b)

∑
i∈N

SiS
∗
i = idH.
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Proof Let i ∈ N. Clearly, Si is a linear map. By Proposition 1,

‖Siφ‖2H =
1

ρi

∫
X

|(φ ◦ σ)1σi(X)|2 dµ =

∞∑
j=1

ρj
ρi

∫
σi(X)

|φ ◦ σ|2d(µ ◦ σ−1j ),

Since σ−1j (σi(X)) = X if i = j, and σ−1j (σi(X)) = ∅ otherwise, from Theorem
3 and (8), follows

‖Siφ‖2H =

∫
σi(X)

|φ ◦ σ|2d(µ ◦ σ−1i ) =

∫
X

|φ ◦ σ|2 ◦ σidµ

=

∫
X

|φ(σ ◦ σi)|2dµ = ‖φ‖2H.

So, Si is a isometry.
Now, we show that S∗i is the adjoint of Si. Let φ, ψ ∈ H. From Proposition 1
and Theorem 3 we have∫

X

φSiψdµ =

∞∑
j=1

ρj√
ρi

∫
σi(X)

φψ ◦ σd(µ ◦ σ−1j )

=
ρi√
ρi

∫
σi(X)

φψ ◦ σd(µ ◦ σ−1i ) =
√
ρi

∫
X

(φ ◦ σi)ψdµ

=

∫
X

(S∗i φ)ψdµ.

The relation (a) can be easily computed. Indeed, let φ ∈ H, then

S∗i Sjφ =

√
ρi
√
ρj

((φ ◦ σ)1σj(X)) ◦ σi =

√
ρi
√
ρj

(φ ◦ σ ◦ σi)(1σj(X) ◦ σi),

Since 1σj(X) ◦ σi = δi,j1X , according to (8) we obtain S∗i Sjφ = δi,jφ.
In order to prove (b), we note that

SiS
∗
i φ = (φ ◦ σi ◦ σ)1σi(X).

From (6) it follows that σi ◦σ|σi(X) = idσi(X), and so SiS
∗
i φ = φ1σi(X). Thus,

(7) shows that
∞∑
i=1

SiS
∗
i φ = φ1∪i∈Nσi(X) = φ.

The proof is complete. ut

We can now show that a series of orthogonal projections can be defined as
a orthogonal projection on H.

Lemma 3 [3, p. 256] Let {Pi} be a sequence of pairwise orthogonal projec-
tions on H. Then for each φ in H,

∑
i∈N Piφ converges in H to Pφ, where P

is the orthogonal projection of H onto ∨{Pi(H) : i ≥ 1}.
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Lemma 4 For each E ∈ P (X) the map Φ(E) : B(X)→ B(H) given by

Φ(E)(∆) =

∞∑
i=1

SiE(σ−1i (∆))S∗i ,

is well defined.

Proof Set E ∈ P (X). For ∆ ∈ B(X), let {Pi} be a sequence of bounded linear
operator on H given by Pi = SiE(σ−1i (∆)S∗i , i ∈ N. Let i ∈ N, φ, ψ ∈ H. By
Theorem 4 we have

PiPiφ = (SiE(σ−1i (∆))S∗i )(SiE(σ−1i (∆))S∗i )φ

= SiE(σ−1i (∆))E(σ−1i (∆))S∗i φ

= SiE(σ−1i (∆))S∗i φ

= Piφ,

and

〈Piφ, ψ〉 =
〈
SiE(σ−1i (∆))S∗i φ, ψ

〉
=
〈
E(σ−1i (∆))S∗i φ, S

∗
i ψ
〉

=
〈
S∗i φ,E(σ−1i (∆))S∗i ψ

〉
=
〈
φ, SiE(σ−1i (∆))S∗i ψ

〉
= 〈φ, Piψ〉 .

In addition, we also obtain

〈Piφ, Pjψ〉 =
〈
SiE(σ−1i (∆))S∗i φ, SjE(σ−1j (∆))S∗jψ

〉
=
〈
E(σ−1i (∆))S∗i φ, S

∗
i SjE(σ−1j (∆))S∗jψ

〉
=
〈
E(σ−1i (∆))S∗i φ, δi,jidHE(σ−1j (∆))S∗jψ

〉
= 0,

for i 6= j. Thus, {Pi} is a sequence of pairwise orthogonal projections on H,
and in consequence Φ(E)(∆) is well defined by Lemma 3. ut

Next we recall a relationship between double and iterated limits of double
sequences.

Let (Z, δ) be a metric space. We recall that a double sequence hlm converges
to h ∈ Z and we write liml,m→∞ hlm = h, if the following condition is satisfied:
for every ε > 0, there exists N = N(ε) ∈ N such that δ(hlm, h) < ε for all
l,m ≥ N . The element h is called the double limit of the double sequence
{hlm}(l,m)∈N2 .

It is clear to see that if the double sequence hlm converges to h and
limm→∞ hl,m exists for each l, then the iterated limit lim

l→∞
lim
m→∞

hlm exists

and it is equal to h. We note that switching the roles of m and l yields the
analogous result for the other iterated limit. So we have the following propo-
sition.
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Proposition 2 Suppose that the double sequence hlm converges to h ∈ Z. If
lim
l→∞

hlm exists for each m, and lim
m→∞

hlm exists for each l, then the iterated

limit lim
m→∞

lim
l→∞

hlm and lim
l→∞

lim
m→∞

hlm exist and both are equal to h.

The following result is a consequence of the above lemma.

Lemma 5 If {Pin}(i,n)∈N2 is a sequence of pairwise orthogonal projections on

H, then
∞∑
i=1

∞∑
n=1

Pinφ =
∞∑
n=1

∞∑
i=1

Pinφ for all φ ∈ H.

Proof Consider a bijection a : N → N2. Since {Pa(i)}i∈N is a sequence of
pairwise orthogonal projections on H, from Lemma 3, for each φ in H, we
have that ∑

i∈N
Pa(i)φ = Pφ, (12)

where P is the orthogonal projection of H onto ∨{Pa(i)(H) : i ≥ 1}.
Let F be the collection of all finite subsets F ⊂ N2, and order F by inclusion,
so F becomes a directed set. For each F ∈ F and φ ∈ H fixed, define

PFφ =
∑
j∈F

Pjφ.

Then {PFφ : F ∈ F} is a net in H. From [3, Definition 4.11, p.16] and (12) we
have that {PFφ : F ∈ F} converge to Ph. Precisely, given a neighbourhood V
of Pφ, there exists F0 ∈ N2 such that PFφ ∈ V , for all F ∈ F with F0 ⊂ F .
In particular, given ε > 0, consider the neighbourhood V = {ψ ∈ H : ‖ψ −
Pφ‖H < ε}. Then, there exists F0 = {(x1, y1), (x2, y2), . . . , (xn0 , yn0)} ⊂ N2

such that PFφ ∈ V , for all F0 ⊂ F . Therefore, if

N = max{x1, y1, x2, y2, . . . , xn0
, yn0
}

and Flm = {(i, k) ∈ N2 : 1 ≤ i ≤ l, 1 ≤ k ≤ m}, then∥∥∥∥∥∥
∑

(i,n)∈Flm

Pinφ− Pφ

∥∥∥∥∥∥
H

< ε, for all l,m ≥ N.

In consequence,

lim
l,m→∞

l∑
i=1

m∑
n=1

Pinφ = Pφ.

Let hlm =
l∑
i=1

m∑
n=1

Pinφ for (l,m) ∈ N2. By Lemma 3,
∞∑
i=1

Pinφ is convergent

for each n ∈ N, and
∞∑
n=1

Pinφ is convergent for each i ∈ N. Hence, lim
l→∞

hlm =
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m∑
n=1

∞∑
i=1

Pinφ for each m, and lim
m→∞

hlm =
l∑
i=1

∞∑
n=1

Pinφ for each l. So, from

Lemma 2 we conclude that
∞∑
i=1

∞∑
n=1

Pinφ =

∞∑
n=1

∞∑
i=1

Pinφ = Pφ.

The proof is complete. ut
Now, we will prove that the map Φ is well defined.

Theorem 5 The map Φ : P (X)→ P (X) given by

Φ(E)(·) =

∞∑
i=1

SiE(σ−1i (·))S∗i ,

is well defined.

Proof Set E ∈ P (X) and let φ, ψ ∈ H. By Lemma 4, Φ(E)(∆) ∈ B(H), for
∆ ∈ B(X). So, condition 1 of Definition 1 holds. Condition 2 of Definition 1
can be easily computed. Indeed,

Φ(E)(∅) =

∞∑
i=1

SiE(σ−1i (∅))S∗i = 0,

and according to Theorem 4 we get

Φ(E)(X) =

∞∑
i=1

SiE(σ−1i (X))S∗i =

∞∑
i=1

SiS
∗
i = idH.

To prove condition 3 of Definition 1, let ∆1, ∆2 ∈ B(X). We use the continuity
of S∗i , i ∈ N, and Theorem 4 to obtain that

Φ(E)(∆1)Φ(E)(∆2)φ =

∞∑
i=1

SiE(σ−1i (∆1))S∗i

 ∞∑
j=1

SjE(σ−1j (∆2))S∗j φ


=

∞∑
i=1

SiE(σ−1i (∆1))

 ∞∑
j=1

S∗i SjE(σ−1j (∆2))S∗j φ


=

∞∑
i=1

SiE(σ−1i (∆1))

 ∞∑
j=1

δi,jE(σ−1j (∆2))S∗j φ


=

∞∑
i=1

SiE(σ−1i (∆1))E(σ−1i (∆2))S∗i φ

=

∞∑
i=1

SiE(σ−1i (∆1) ∩ σ−1i (∆2))S∗i φ

=

∞∑
i=1

SiE(σ−1i (∆1 ∩∆2))S∗i φ

= Φ(E)(∆1 ∩∆2)φ.
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Finally, to prove condition 4 of Definition 1, let {∆n}∞n=1 be a sequence of
pairwise disjoint sets in B(X). As the pre-image preserves the union of sets,
and σ−1i (∆n) ∩ σ−1i (∆m) = ∅ for n 6= m, i ∈ N, then the continuity of 〈·, ·〉
leads to〈

Φ(E)

( ∞⋃
n=1

∆n

)
φ, ψ

〉
=

〈 ∞∑
i=1

SiE

( ∞⋃
n=1

σ−1i (∆n)

)
S∗i φ, ψ

〉

=

∞∑
i=1

〈
SiE

( ∞⋃
n=1

σ−1i (∆n)

)
S∗i φ, ψ

〉

=

∞∑
i=1

〈
E

( ∞⋃
n=1

σ−1i (∆n)

)
S∗i φ, S

∗
i ψ

〉

=

∞∑
i=1

∞∑
n=1

〈
E(σ−1i (∆n))S∗i φ, S

∗
i ψ
〉

=

∞∑
i=1

∞∑
n=1

〈
SiE(σ−1i (∆n))S∗i φ, ψ

〉
=

〈 ∞∑
i=1

∞∑
n=1

SiE(σ−1i (∆n))S∗i φ, ψ

〉
.

Let {Pin}(i,n)∈N2 be a sequence of bounded linear operator on H given by
Pin = SiE(σ−1(∆n))S∗i . A similar analysis that in the proof of Lemma 4
shows that Pin are orthogonal projections. In addition,

〈Pinφ, Pjmψ〉 =
〈
E(σ−1i (∆n))S∗i φ, δi,jidHE(σ−1j (∆m))S∗jψ

〉
= δi,j

〈
S∗i φ,E(σ−1i (∆n))E(σ−1j (∆m))S∗jψ

〉
= δi,j

〈
S∗i φ,E(σ−1i (∆n) ∩ σ−1j (∆m))S∗jψ

〉
= δi,j

〈
S∗i φ, δn,mE(σ−1i (∆n))S∗jψ

〉
= 0,

for (i, n) 6= (j,m). Thus, {Pin}(i,n)∈N2 is a sequence of pairwise orthogonal
projections on H. Now, Lemma 5 shows that

∞∑
i=1

∞∑
n=1

SiE(σ−1i (∆n))S∗i φ =

∞∑
n=1

∞∑
i=1

SiE(σ−1i (∆n))S∗i φ.

So, by the continuity of 〈·, ·〉 we obtain that〈
Φ(E)

( ∞⋃
n=1

∆n

)
φ, ψ

〉
=

〈 ∞∑
n=1

∞∑
i=1

SiE(σ−1i (∆n))S∗i φ, ψ

〉

=

〈 ∞∑
n=1

Φ(E)(∆n)φ, ψ

〉

=

∞∑
n=1

〈Φ(E)(∆n)φ, ψ〉 .
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The proof is complete. ut

4 A projection-valued measure for a CIFS

In this section, we prove the main result of this paper, that is, the existence
of a projection-valued measure for a CIFS.

First, we show that the map Φ given in (11) is a Lipschitz contraction on
(P (X), ρ). We start proving the following assertion:

Φ(E)φ,φ(∆) =

∞∑
i=1

ES∗i φ,S∗i φ(σ−1i (∆)), (13)

for all E ∈ P (X), ∆ ∈ B(X) and φ ∈ H. In fact,

Φ(E)φ,φ(∆) = 〈Φ(E)(∆)φ, φ)〉 =

∞∑
i=1

〈
SiE(σ−1i (∆))S∗i φ, φ

〉
=

∞∑
i=1

〈
E(σ−1i (∆))S∗i φ, S

∗
i φ
〉

=

∞∑
i=1

ES∗i φ,S∗i φ(σ−1i (∆)).

Theorem 6 The map Φ : P (X)→ P (X) given by

Φ(E)(·) =

∞∑
i=1

SiE(σ−1i (·))S∗i

is a Lipschitz contraction on (P (X), ρ).

Proof Let r = sup
i∈N
{ri} and E,F ∈ P (X). Choose f ∈ Lip1(X). Since

∫
f dΦ(E)−

∫
f dΦ(F )

is an operator self-adjoint,∥∥∥∥∫ f dΦ(E)−
∫
f dΦ(F )

∥∥∥∥
= sup
‖φ‖∞=1

{∣∣∣∣〈(∫ f dΦ(E)−
∫
f dΦ(F )

)
φ, φ

〉∣∣∣∣} .
Let φ ∈ H be with ‖φ‖∞ = 1. Then, by (13), Remark 1, Proposition 1 and
Remark 3, we have that∣∣∣∣〈(∫ f dΦ(E)−

∫
f dΦ(F )

)
φ, φ

〉∣∣∣∣
=

∣∣∣∣〈(∫ f dΦ(E)

)
φ, φ

〉
−
〈(∫

f dΦ(F )

)
φ, φ

〉∣∣∣∣
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=

∣∣∣∣∫
X

f dΦ(E)φ,φ −
∫
X

f dΦ(F )φ,φ

∣∣∣∣
=

∣∣∣∣∣
∞∑
i=1

∫
X

f d(ES∗i φ,S∗i φ ◦ σ
−1
i ))−

∞∑
i=1

∫
X

f d(FS∗i φ,S∗i φ ◦ σ
−1
i )

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
i=1

∫
X

f ◦ σi dES∗i φ,S∗i φ −
∞∑
i=1

∫
X

f ◦ σi dFS∗i φ,S∗i φ

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
i=1

(∫
X

f ◦ σi dES∗i φ,S∗i φ −
∫
X

f ◦ σi dFS∗i φ,S∗i φ
)∣∣∣∣∣

= r

∣∣∣∣∣
∞∑
i=1

(∫
X

f ◦ σi
r

dES∗i φ,S∗i φ −
∫
X

f ◦ σi
r

dFS∗i φ,S∗i φ

)∣∣∣∣∣
≤ r

∞∑
i=1

∣∣∣∣∫
X

f ◦ σi
r

dES∗i φ,S∗i φ −
∫
X

f ◦ σi
r

dFS∗i φ,S∗i φ

∣∣∣∣
= r

∞∑
i=1

∣∣∣∣〈(∫ f ◦ σi
r

dE −
∫
f ◦ σi
r

dF

)
S∗i φ, S

∗
i φ

〉∣∣∣∣
≤ r

∞∑
i=1

(∥∥∥∥∫ f ◦ σi
r

dE −
∫
f ◦ σi
r

dF

∥∥∥∥ ‖S∗i φ‖2H) .
Note that the function f◦σi

r ∈ Lip1(X), for all i ∈ N. Hence, Theorem 4 implies
that ∣∣∣∣〈(∫ f dΦ(E)−

∫
f dΦ(F )

)
φ, φ

〉∣∣∣∣
≤ rρ(E,F )

( ∞∑
i=1

〈S∗i φ, S∗i φ〉

)
= rρ(E,F )

( ∞∑
i=1

〈SiS∗i φ, φ〉

)

= rρ(E,F )

〈( ∞∑
i=1

SiS
∗
i

)
φ, φ

〉
= rρ(E,F ) 〈φ, φ〉 = rρ(E,F ),

Therefore, ∥∥∥∥∫ f dΦ(E)−
∫
f dΦ(F )

∥∥∥∥ ≤ rρ(E,F ).

Since f is an arbitrary element of Lip1(X),

ρ(Φ(E), Φ(F )) ≤ rρ(E,F ),

with r < 1. This proves that Φ is a Lipschitz contraction on (P (X), ρ). ut

By Theorems 1 and 6 we have that Φ is a contraction on the complete metric
space (P (X), ρ). So, by the Banach Fixed Point Theorem, we can deduce our
main result, which extends [4, Theorem 1.7].
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Theorem 7 Let {σi : i ∈ N} be a CIFS on a compact metric space (Y, d) with
Lipschitz constants ri. Assume r := sup{ri : i ∈ N} < 1 and let X ⊂ Y be the
attractor associated to the CIFS satisfying σi(X) ∩ σj(X) = ∅ for i 6= j. We
consider the isometries Si and S∗i defined in (10).Then there exists a unique
projection-valued measure, E ∈ P (X), such that

E(∆) =

∞∑
i=1

SiE(σ−1i (∆))S∗i ,

for all ∆ ∈ B(X).
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