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Abstract In this paper we study the convergence of a net of subspaces gener-
ated by horizontal dilations of polynomials in a finite dimensional subspace. As
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1 Introduction

Suppose that {aj} is a data set. This data are values of a function and its
derivatives in a point. If we want to approximate these data using a polyno-
mial of degree at most l, which will be the best algorithm to use? A Taylor
polynomial of degree l is probably the most natural procedure to use.
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The problem of finding an optimal algorithm to approximate a finite num-
ber of data corresponding to a function is developed in the best local approx-
imation theory.

In 1934, Walsh proved in [9] that the Taylor polynomial of degree l for an
analytic function f can be obtained by taking the limit as ε → 0 of the best
Chebyshev approximation to f from Π l on the disk |z| ≤ ε. This paper was
the first association between the best local approximation to a function f from
Π l in 0 and the Taylor polynomial for f at the origin. However, the concept
of best local approximation has been introduced and developed more recently
by Chui, Shisha, and Smith in [1]. Later, several authors [2–8,10] have studied
this problem.

We consider a family of function seminorms {‖·‖ε}ε>0, acting on Lebesgue
measurable functions F : B ⊂ Rn → Rk, where B is the unit ball centered at
the origin in Rn. We will use the notation F ε(x) = F (εx) and ‖F‖∗ε = ‖F ε‖ε.
For l ∈ N ∪ {0}, we will denote by Π l the class of algebraic polynomials in
n-variables of degree at most l, and Π l

k the set {P = (p1, . . . , pk) : ps ∈ Π l}.
Let A be a subspace of Π l

k and let {Pε}ε>0 be a net of best approximants
to F from A respect to ‖ · ‖∗ε, i.e.,

‖F − Pε‖∗ε ≤ ‖F − P‖∗ε, for all P ∈ A. (1)

If the net {Pε}ε>0 has a limit in A as ε→ 0, this limit is called the best local
approximation to F from A in 0. According to (1), we observe that P εε is a
polynomial in

Aε := {P ε : P ∈ A} ⊂ Π l
k (2)

of best approximation to F ε by elements of the class Aε, respect to the semi-
norm ‖ · ‖ε. We write it briefly by P εε ∈ PAε,ε(F ε). Note that Aε is a subspace
generated by horizontal dilations the polynomials in A.

From now on, we assume the following properties for the family of function
seminorms ‖ · ‖ε, 0 ≤ ε ≤ 1.

(1) For F = (f1, . . . , fk) and G = (g1, . . . , gk), we have ‖F‖ε ≤ ||G||ε, for
every ε > 0, whenever |fs| ≤ |gs|, s = 1, . . . , k.

(2) If 1 is the function F (x) = (1, . . . , 1), we have ‖1‖ε <∞, for all ε > 0.
(3) For every F ∈ Ck(B), we have ‖F‖ε → ‖F‖0, as ε → 0, where Ck(B) is

the set of continuous functions F : B ⊂ Rn → Rk. Moreover, ‖ · ‖0 is a
norm on Ck(B).

An important point to note here is that there exist positive constants
C = C(m, k) and ε(m, k) such that for every 0 < ε ≤ ε(m, k),

1

C
‖P‖0 ≤ ‖P‖ε ≤ C‖P‖0, for every P ∈ Πm

k . (3)

[11, Proposition 3.1]. For examples of nets of seminorms fulfilling conditions
(1)-(3), we refer the reader to [11].

We say that F : B ⊂ Rn → Rk has a Taylor polynomial of degree m at 0,
if there exists P ∈ Πm

k such that

‖F − P‖∗ε = o(εm), as ε→ 0.
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It is well known that if it exists, it is unique and is denoted by Tm = Tm(F ) [11,
Proposition 3.3]. We write F ∈ tm if the function F has the Taylor polynomial
of degree m at 0. Moreover, if F ∈ tm and Tm(F ) =

∑
|α|≤m Cαx

α, then the

Taylor polynomial of degree l ≤ m for F at 0, is given by Tl(F ) =
∑
|α|≤l Cαx

α

[11, Proposition 3.5]. We set ∂αF (0) for the vector α!Cα.
The problem of best local approximation with a family of function semi-

norms {‖ · ‖ε}ε>0 satisfying (1)-(3) was considered in [11] for two types of
approximation class A fulfilling Πm

k ⊂ A ⊂ Π l
k and

(c1) Aε = A, for each ε > 0, or
(c2) if P ∈ A and Tm+1(P ) = 0, then P = 0.

Firstly, the authors studied the asymptotic behavior of a normalized error
function as ε → 0 [11, Theorems 4.2 and 4.5]. Secondly, they showed that
there exists the best local approximation to F in 0 and is associated with a
Taylor polynomial for F in 0 [11, Theorem 5.1]. In particular, if A = Πm

k and
F ∈ tm, they proved that Pε → Tm(F ), as ε→ 0 [11, Theorem 3.1].

In this work we generalize the results found in [11], without the restrictions
(c1) or (c2) given above. For this, it is essential to study the convergence of
the net {Aε} as ε→ 0.

This paper is organized as follows. In Section 2, we investigate the asymp-
totic behavior of {Aε}. In Section 3, we study the asymptotic behavior of the
error function ε−m−1(Fε − Pε)ε for a suitable integer, and we show some re-
sults about the best local approximation in the origin which generalizes those
of [11].

2 Asymptotic behavior of the net {Aε}

In this section, we study the asymptotic behavior of the net {Aε} given in (2).
We begin with the following definition.

Definition 21 Let A ⊂ Π l
k be a subspace. We say that P ∈ lim

ε→0
Aε if there

exists a net {Pε} ⊂ A such that lim
ε→0
‖P − P εε ‖0 = 0. We denote B = lim

ε→0
Aε.

Remark 22 If A ⊂ Π l
k is a subspace, then the sets Aε and B are also sub-

spaces of Π l
k. Furthermore, if Aε = A, for all ε > 0, we have that B = A.

Proposition 23 Let A be a subspace of polynomials such that Πm
k ⊂ A for

some m ∈ N ∪ {0} and k ∈ N. Then Πm
k ⊂ Aε for all ε > 0. Moreover,

Πm
k ⊂ B.

Proof Set Rα,i(x) = xαei, |α| ≤ m, 1 ≤ i ≤ k, where {ei}ki=1 is the canonical
basis of Rk. Then

{Rα,i : |α| ≤ m, 1 ≤ i ≤ k} (4)

is a basis of the space Πm
k . Since Aε is a subspace, we have Rα,i = 1

ε|α|
Rεα,i ∈

Aε, and so Πm
k ⊂ Aε, for all ε > 0. Finally, using the definition of B, we obtain

Πm
k ⊂ B.
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From now on, for any Lebesgue measurable function F : B ⊂ Rn → Rk we
denote T−1(F ) = 0.

Proposition 24 Let A be a subspace of Π l
k and let 0 ≤ s+1 ≤ l be an integer.

If P ∈ A satisfies Ts(P ) = 0 and Ts+1(P ) 6= 0, then Ts+1(P ) ∈ B.

Proof For each ε > 0 we define Qε = P
εs+1 ∈ A. Since Ts(P ) = 0, it follows that

‖Ts+1(P )−Qεε‖0 = ‖(Ts+1(P )−P )ε‖0
εs+1 . So ‖Ts+1(P )−Qεε‖0 = o(1) as ε→ 0, and

thus Ts+1(P ) ∈ B.

The following sets will be needed throughout the paper. Let A be a non-
zero subspace of Π l

k. We define

A−1 := A and Aj := {P ∈ A : Tj(P ) = 0} for 0 ≤ j ≤ l. (5)

We note that
Aj ⊂ Ai whenever i < j.

Since Al ⊂ {P ∈ Π l
k : Tl(P ) = 0} = {0}, we have

{j : 0 ≤ j ≤ l and Aj 6= A} 6= ∅ and {j : 0 ≤ j ≤ l and Aj = {0}} 6= ∅.

Set
s0 = min {j : 0 ≤ j ≤ l and Aj 6= A}

and
r0 = min {j : 0 ≤ j ≤ l and Aj = {0}} .

It easy to see that 0 ≤ s0 ≤ r0 ≤ l, and

s0, r0 ∈ {j : s0 ≤ j ≤ r0 and Aj ( Aj−1} =: J. (6)

We can now formulate our main result which describes the limit set B.

Theorem 25 Let A be a non-zero subspace of Π l
k. Then B is a subspace of

Πr0
k isomorphic to A. Furthermore, under the above notation it is verified that

(a) if s0 < r0 and J \ {r0} = {s0, . . . , sN} with si < si+1 for N > 0, then
B = Tr0(AsN )⊕TsN (SsN )⊕TsN−1

(SsN−1
)⊕. . .⊕Ts0(Ss0), where Asi⊕Ssi =

Asi−1, 0 ≤ i ≤ N ;
(b) if s0 = r0, then B = Tr0(A).

Proof (a) Assume s0 < r0. Since every subspace of Asi−1, 0 ≤ i ≤ N , has a
complement, there exists a subspace Ssi ⊂ Asi−1 such that

Asi ⊕ Ssi = Asi−1, 0 ≤ i ≤ N. (7)

In consequence,
A = AsN ⊕ SsN ⊕ SsN−1

⊕ . . .⊕ Ss0 . (8)

As Ssi ⊂ Asi−1, 0 ≤ i ≤ N , and Ar0−1 = AsN we obtain

Q(x) =

{∑
|α|≥si

∂αQ(0)
α! xα, if Q ∈ Ssi , 0 ≤ i ≤ N.∑

|α|≥sN+1

∂αQ(0)
α! xα, if Q ∈ AsN .

(9)
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where sN+1 = r0. Let Ti : Ssi → Πsi
k be a linear operator defined by

Ti(P ) = Tsi(P ), 0 ≤ i ≤ N , and TN+1 : A → Π
sN+1

k be the linear opera-
tor given by TN+1(P ) = TsN+1

(P ). We claim that
(i) Ti is an injective operator, 0 ≤ i ≤ N + 1.

(ii) TsN+1
(AsN ) ∩

∑N
i=0 Tsi(Ssi) = {0}.

(iii) If N > 0 then Tsl(Ssl) ∩
(
TsN+1

(AsN ) +
∑N
i=0,i6=l Tsi(Ssi)

)
= {0} when-

ever l 6= i.
Indeed, let 0 ≤ i ≤ N . If Tsi(P ) = Tsi(Q) for some P,Q ∈ Ssi , then
P − Q ∈ Asi ∩ Ssi . So (7) implies that P = Q. On the other hand, if
TsN+1

(P ) = TsN+1
(Q) with P,Q ∈ A, then P − Q ∈ AsN+1

= {0}, which
proves (i). To prove (ii) we consider QN+1 ∈ AsN and Qi ∈ Ssi such that

P = TsN+1
(QN+1) =

∑N
i=0 Tsi(Qi). From (9) we see that

TsN+1
(QN+1)(x) =

∑
|α|=sN+1

∂αQN (0)

α!
xα and

N∑
i=0

Tsi(Qi) ∈ Π
sN
k . (10)

Therefore P = 0. Now, let QN+1 ∈ AsN and Qi ∈ Ssi be such that

P = Tsl(Ql) = TsN+1
(QN+1) +

N∑
i=0,i6=l

Tsi(Qi). (11)

From (9) it follows that

Tsi(Qi) =
∑
|α|=si

∂αQi(0)

α!
xα, 0 ≤ i ≤ N.

According to (10) and (11) we have P = 0, and (iii) is proved.
Using (i)-(iii), we deduce that the subspace

TsN+1
(AsN ) + TsN (SsN ) + TsN−1

(SsN−1
) + . . .+ Ts0(Ss0)

is a direct sum isomorphic to A. The proof concludes by proving

B = TsN+1
(AsN )⊕ TsN (SsN )⊕ TsN−1

(SsN−1
)⊕ . . .⊕ Ts0(Ss0). (12)

We observe that if P ∈ Ssi \{0}, then Tsi(P ) 6= 0 and Tsi−1(P ) = 0 by (7). So,
Proposition 24 implies that Tsi(P ) ∈ B. On the other hand, if P ∈ AsN \{0}, we
get TsN (P ) = 0. Moreover, we have TsN+1

(P ) 6= 0. In fact, on the contrary, we
see that P ∈ AsN+1

= {0}. Proposition 24 now gives TsN+1
(P ) ∈ B. Therefore,

TsN+1
(AsN )⊕ TsN (SsN )⊕ TsN−1

(SsN−1
)⊕ . . .⊕ Ts0(Ss0) ⊂ B.

On the other hand, if P ∈ B, there exists {Pε} ⊂ A such that

lim
ε→0
||P − P εε ||0 = 0. (13)

Let dN+1 =dim(AsN ) and di =dim(Ssi), 0 ≤ i ≤ N . We take {vl}dN+1

l=1 and

{wir}dir=1 basis of AsN , and Ssi respectively. It is easy to check that for each
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0 < ε ≤ 1, {ε−sN+1vl}al=1 is a basis of AsN and {ε−siwir}dir=1 is a basis of Ssi ,
0 ≤ i ≤ N . According to (8), we have that there exist real numbers. Dl,ε, Ci,r,ε
such that

Pε =

dN+1∑
l=1

ε−sN+1Dl,εvl +

N∑
i=0

di∑
r=1

ε−siCi,r,εwir.

From (9) it follows that

vl(x) =
∑

|α|≥sN+1

∂αvl(0)

α!
xα and wir(x) =

∑
|α|≥si

∂αwir(0)

α!
xα.

Consequently,

P εε (x) =

dN+1∑
l=1

Dl,εε
−sN+1vεl (x) +

N∑
i=0

di∑
r=1

Ci,r,εε
−siwεir(x)

=

dN+1∑
l=1

∑
|α|=sN+1

Dl,ε
∂αvl(0)

α!
xα +

dN+1∑
l=1

∑
|α|>sN+1

Dl,εε
|α|−sN+1

∂αvl(0)

α!
xα

+

N∑
i=0

di∑
r=1

∑
|α|=si

Ci,r,ε
∂αwir(0)

α!
xα +

N∑
i=0

di∑
r=1

∑
|α|>si

Ci,r,εε
|α|−si ∂

αwir(0)

α!
xα

=

dN+1∑
l=1

Dl,εTsN+1
(vl)(x) +

N∑
i=0

(
di∑
r=1

Ci,r,εTsi(wir)(x)

)

+

dN+1∑
l=1

∑
|α|>sN+1

Dl,εε
|α|−sN+1

∂αvl(0)

α!
xα

+

N∑
i=0

di∑
r=1

∑
|α|>si

Ci,r,εε
|α|−si ∂

αwir(0)

α!
xα.

An straightforward computation shows that

Ts0(P εε )(x) =

d0∑
r=1

C0,r,εTs0(w0r)(x)

Tsj (P
ε
ε )(x) = Tsj−1(P εε )(x) +

j−1∑
i=0

di∑
r=1

∑
si<|α|≤sj

Ci,r,εε
|α|−si ∂

αwir(0)

α!
xα

+

dj∑
r=1

Cj,r,εTsj (wjr)(x),
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1 ≤ j ≤ N , and

TsN+1
(P εε )(x) = TsN (P εε )(x) +

N∑
i=0

di∑
r=1

∑
si<|α|≤sN+1

Ci,r,εε
|α|−si ∂

αwir(0)

α!
xα

+

dN+1∑
l=1

Dl,εTsN+1
(vl)(x).

Since {TsN+1
(vl)}al=1 is a basis of TsN+1

(AsN ) and {Ti(wir)}dir=1 is a basis of
Ti(Ssi), 0 ≤ i ≤ N , (13) shows that there are real numbers. Dl and Ci,r such
that Dl,ε, → Dl and Ci,r,ε → Ci,r, as ε→ 0. In consequence,

P =

a∑
l=1

DlTsN+1
(vl) +

N∑
i=0

(
di∑
r=1

Ci,rTsi(wir)

)
,

and so P ∈ TsN+1
(AsN )⊕ TsN (SsN )⊕ TsN−1

(SsN−1
)⊕ . . .⊕ Ts0(Ss0).

(b) Now assume s0 = r0, i.e. As0 = {0}. Then A has the form (8) with N = 0,
As0 = {0} and Ss0 = A. An analysis similar to the proof of (a) shows that Tr0
is an isomorphism and B = Ts0(Ss0) = Tr0(A).

The following corollary follows immediately from the proof of Theorem 25.

Corollary 26 Let A be a non-zero subspace of Π l
k. Then lim

n→∞
Aεn = B for

any sequence {εn} of the net ε ↓ 0.

Remark 27 B is isomorphic to Tr0(A).

Corollary 28 Let s ≥ m+ 1 and let A = Πm
k ⊕As−1 be such that As = {0}.

Then B = Πm
k ⊕ Ts(As−1) and the linear operator T : A → Πs

k given by
T (P ) = Ts(P ) define an isomorphism between A and B.

Proof We first claim that T is an injective operator. Indeed, if T (P ) = T (Q)
for P,Q ∈ A, then Ts(P − Q) = 0 and so P − Q ∈ As. Since As = {0}, we
have P = Q.
As A is isomorphic to T (A), the proof concludes by proving B = Πm

k ⊕
Ts(As−1) = Ts(A).
Let Aj be the sets defined in (5). Since

{0} = As ( As−1 = . . . = Am ( Am−1 ( . . . ( A0 ( A,

then A = As−1 ⊕ Bm ⊕ Bm−1 ⊕ . . .⊕ B0, where Ai ⊕ Bi = Ai−1, 0 ≤ i ≤ m.
Therefore Πm

k is isomorphic to Bm⊕ . . .⊕B0. On the other hand, since s0 = 0,
r0 = s and J \ {r0} = {0, 1, . . . ,m}, by Proposition 25 (a),

B = Ts(As−1)⊕ Tm(Bm)⊕ . . .⊕ T0(B0).

From the proof of Theorem 25, we obtain that Bm⊕ . . .⊕B0 is isomorphic to
Tm(Bm)⊕ . . .⊕T0(B0), and consequently Πm

k is isomorphic to Tm(Bm)⊕ . . .⊕
T0(B0) ⊂ Πm

k . Hence, Tm(Bm)⊕ . . .⊕ T0(B0) = Πm
k and so B = Ts(As−1)⊕

Πm
k = Ts(As−1)⊕ Ts(Πm

k ) = Ts(A).
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3 An application to best local approximation

Let {Pε} be a net of best approximants to F from A respect to ‖ · ‖∗ε, and let
Eε be the error function

Eε(F ) =
F ε − P εε
εm+1

.

If F ∈ tm+1, then

F ε = T εm+1 + εm+1Rεm+1 where Rm+1 =
F − Tm+1

εm+1
, ||Rεm+1||ε = o(1),

and Tm+1 is the Taylor polynomial of F of degree m+ 1 at 0. Moreover,

λP εε ∈ PAε,ε(λF ε) and P ε + P εε ∈ PAε,ε((P + F )ε), for P ∈ A.

The following proposition may be proved in much the same way as [11,
Proposition 4.1]. However, we repeat the proof by completeness.

Proposition 31 Let A be a non-zero subspace of Π l
k with l > m, and let

{Pε} be a net of best approximants of F from A respect to ‖ · ‖∗ε. If F ∈ tm+1,
Tm ∈ A and φm+1 = Tm+1 − Tm, then

Eε(F ) = φm+1 +Rεm+1 − PAε,ε(φm+1 +Rεm+1),

where ‖Rεm+1‖ε = o(1), as ε→ 0.

Proof Since Rεm+1 =
F ε−T εm+1

εm+1 , then

φm+1 +Rεm+1 = Tm+1 − Tm +
F ε − T εm+1

εm+1
=
T εm+1 − T εm

εm+1
+
F ε − T εm+1

εm+1

=
F ε − T εm
εm+1

.

As Tm ∈ A, we have

φm+1 +Rεm+1 − PAε,ε(φm+1 +Rεm+1) =
F ε − T εm
εm+1

− PAε,ε
(
F ε − T εm
εm+1

)
=
F ε − P εε
εm+1

= Eε(F ).

Next, we give a new result about the asymptotic behavior of error without
the conditions (c1) or (c2), which generalizes Theorems 4.2 and 4.5 given
in [11].

Theorem 32 Let A be a non-zero subspace of Π l
k with l > m. If F ∈ tm+1,

Tm ∈ A and φm+1 = Tm+1 − Tm, then

‖Eε(F )‖ε → inf
P∈B
‖φm+1 − P‖0, as ε→ 0.
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Proof By Proposition 31,

Eε(F ) = φm+1 +Rεm+1 − PAε,ε(φm+1 +Rεm+1), (14)

where ‖Rεm+1‖ε = o(1) as ε→ 0. We first prove

lim
ε→0
||Eε(F )||ε ≤ inf

P∈B
‖φm+1 − P‖0. (15)

In fact, let P ∈ B. By the definition of B, there exists a net {Qε} ⊂ A such
that ‖P −Qεε‖0 → 0, as ε → 0. In consequence, ‖P −Qεε‖ε = o(1), as ε → 0,
by (3). Since Qεε ∈ Aε and ‖Rεm+1‖ε = o(1), from (14) we obtain

‖Eε(F )‖ε ≤ ‖φm+1+Rεm+1−Qεε‖ε ≤ ‖φm+1−Qεε‖ε+o(1), as ε→ 0. (16)

By Property (3), ‖φm+1−P‖ε → ‖φm+1−P‖0, as ε→ 0. Hence, using Triangle
Inequality we have

|‖φm+1 −Qεε‖ε − ‖φm+1 − P‖0| ≤ |‖φm+1 −Qεε‖ε − ‖φm+1 − P‖ε|
+ |‖φm+1 − P‖ε − ‖φm+1 − P‖0|
≤ ‖P −Qεε‖ε + |‖φm+1 − P‖ε − ‖φm+1 − P‖0| = o(1).

as ε→ 0. Now, according to (16) we get (15).
The proof finishes by observing that

lim
ε→0
‖Eε(F )‖ε ≥ inf

P∈B
‖φm+1 − P‖0. (17)

Let ε ↓ 0 be a sequence such that lim
ε→0
‖Eε(F )‖ε = limε→0 ‖Eε(F )‖ε. We con-

sider P εε ∈ PAε,ε(φm+1+Rεm+1). We claim that there exist constants M, ε0 > 0
such that

‖P εε ‖0 ≤M, 0 < ε ≤ ε0. (18)

Indeed, as 0 ∈ Aε we get

‖P εε ‖ε ≤ ‖P εε − (φm+1 +Rεm+1)‖ε + ‖φm+1 +Rεm+1‖ε
≤ 2‖φm+1 +Rεnm+1‖ε
≤ 2‖φm+1‖ε + 2‖Rεm+1‖ε,

(19)

for 0 < ε ≤ 1. By Proposition 31 and Property (3), we see that 2‖φm+1‖ε +
2‖Rεm+1‖ε → 2‖φm+1‖0, as ε→ 0. So, from (3) and (19), we obtain (18).
In consequence, there exists a subsequence of {P εε }, which is denoted in the
same way, and P0 ∈ Π l

k such that P εε → P uniformly on B, as ε → 0. Since
|‖φm+1 −P εε ‖ε −‖φm+1 −P‖0| ≤ |‖φm+1 −P εε ‖ε −‖φm+1 −P‖ε|+ |‖φm+1 −
P‖ε − ‖φm+1 − P‖0| ≤ ‖P − P εε ‖ε + |‖φm+1 − P‖ε − ‖φm+1 − P‖0|, using
Property (3) we get

‖φm+1 − P‖0 = ‖φm+1 − P εε ‖ε + o(1), as ε→ 0.



10 F.E. Levis, C.V. Ridolfi

We observe that P ∈ B by Corolary 26. Therefore, by Proposition 31,

inf
Q∈B
‖φm+1 −Q‖0 ≤ ‖φm+1 − P‖0 = ‖φm+1 − P εε ‖ε + o(1)

≤ ‖φm+1 +Rεm+1 − P εε ‖ε + ‖Rεm+1‖ε
= ‖Eε(F )‖ε + ‖Rεm+1‖ε.

So, inf
Q∈B
‖φm+1 −Q‖0 ≤ lim

ε→0

(
‖Eε(F )‖ε + ‖Rεm+1‖ε

)
= limε→0 ‖Eε(F )‖ε, and

(17) is proved.

The following result provides us with a useful and important property for
a net of best approximants to F from A.

Theorem 33 Let A be a non-zero subspace of Π l
k with l > m, and let {Pε}

be a net of best approximants of F from A respect to ‖ · ‖∗ε. Assume F ∈ tm+1,
Tm ∈ A and φm+1 = Tm+1 − Tm. If C is the cluster point set of the net{

(Pε−Tm)ε

εm+1

}
, as ε → 0, then C 6= ∅. Moreover, each polynomial in C is a

solution of the minimization problem:

min
P∈B
‖φm+1 − P‖0. (20)

Proof We observe

Eε(F ) =
(F − Pε)ε

εm+1
=

(Tm+1 − Tm)ε + (F − Tm+1)ε − (Pε − Tm)ε

εm+1

=
φεm+1 − (Pε − Tm)ε

εm+1
+

(F − Tm+1)ε

εm+1

= φm+1 −
(Pε − Tm)ε

εm+1
+

(F − Tm+1)ε

εm+1
.

Then∥∥∥∥φm+1 −
(Pε − Tm)ε

εm+1

∥∥∥∥
ε

− ||(F − Tm+1)ε||ε
εm+1

≤ ||Eε(F )||ε

≤
∥∥∥∥φm+1 −

(Pε − Tm)ε

εm+1

∥∥∥∥
ε

+
||(F − Tm+1)ε||ε

εm+1
,

and consequently,

||Eε(F )||ε =

∥∥∥∥φm+1 −
(Pε − Tm)ε

εm+1

∥∥∥∥
ε

+ o(1), as ε→ 0,

since F ∈ tm+1. By Theorem 32,

inf
P∈B
||φm+1 − P ||0 = lim

ε→0

∥∥∥∥φm+1 −
(Pε − Tm)ε

εm+1

∥∥∥∥
ε

. (21)

According to (3), there exist constants ε0,M > 0 such that∥∥∥∥φm+1 −
(Pε − Tm)ε

εm+1

∥∥∥∥
0

≤M,
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for all 0 < ε ≤ ε0. The equivalence of the norms in Π l
k implies that the net{

(Pε−Tm)ε

εm+1

}
0<ε≤ε0

is uniformly bounded on B. So, there exists a subsequence

of
{

(Pε−Tm)ε

εm+1

}
0<ε≤ε0

, which is denoted in the same way, and a polynomial P0

such that

(Pε − Tm)ε

εm+1
converge a P0, uniformly on B, as ε→ 0. (22)

In consequence, C 6= ∅.
On the other hand, if P0 ∈ C, there is a sequence ε ↓ 0 such that (Pε−Tm)ε

εm+1 →
P0. Since Tm ∈ A, we have Pε − Tm ∈ A, and so P0 ∈ B by Corollary 26.
Finally, from Property (3) and (21) we conclude that

inf
P∈B
||φm+1 − P ||0 = lim

ε→0

∥∥∥∥φm+1 −
(Pε − Tm)ε

εm+1

∥∥∥∥
ε

= ‖φm+1 − P0‖0 ,

i.e. P0 is a solution of (20).

The following theorem is an extension of [11, Theorem 5.1].

Theorem 34 Let A be a non-zero subspace of Π l
k with l > m, and let {Pε}

be a net of best approximants of F from A respect to ‖ · ‖∗ε. Assume m+ 1 =
min {j : 0 ≤ j ≤ l and Aj = {0}}, F ∈ tm+1 with Tm ∈ A and set φm+1 =
Tm+1 − Tm. If the minimization problem (20) has a unique solution P0, then
Pε → Tm+P , where P ∈ A is uniquely determined by the condition Tm+1(P ) =
P0 − Tm(P0).

Proof Since (20) has a unique solution P0, Theorem 33 implies that

lim
ε→0

(Pε − Tm)ε

εm+1
= P0.

In consequence, ∂α(Pε−Tm)(0)→ 0, |α| ≤ m, and ∂α(Pε−Tm)(0)→ ∂αP0(0),
|α| = m+ 1, as ε→ 0. Therefore

Tm+1(Pε − Tm)(x)→
∑

|α|=m+1

∂αP0(0)

α!
xα =: R(x), x ∈ B, as ε→ 0. (23)

Let T : A → Πm+1
k be the linear operator defined by T (P ) = Tm+1(P ).

As Am+1 = {0}, an analysis similar to that in the proof of Corollary 28
shows that T is an injective operator. Since T (A) is a closed subspace and
{Tm+1(Pε− Tm)} ⊂ T (A), (23) implies that there exists a unique P ∈ A such
that Tm+1(P ) = R. Hence Tm+1(Pε− Tm−P )→ 0 as ε→ 0. As Am+1 = {0}
we see that ‖Q‖ := ‖Tm+1(Q)‖0 is a norm on A, and so Pε → Tm + P as
ε→ 0. Finally, by Theorem 25, B ⊂ Πm+1

k , and consequently P0 − Tm(P0) =
Tm+1(P0)− Tm(P0) = R. The proof is complete.
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Remark 35 If A satisfies the condition (c2), then A = Πm
k ⊕ Am with

Am+1 = {0}. By Corollary 28, B = Πm
k ⊕Tm+1(Am) and each element P ∈ A

is uniquely determined by Tm+1(P ). So, we can rewrite the problem (20) in
the following (equivalent) form:

min
Q+U∈Πmk ⊕Am

‖φm+1 − (Q+ Tm+1(U))‖0. (24)

The following result has been proved in [11, Theorem 5.1] and it is a con-
sequence of Theorem 34.

Corollary 36 Let Πm
k ⊂ A ⊂ Π l

k be a non-zero subspace that satisfies the
condition (c2) and let {Pε} be a net of best approximants of F from A respect
to ‖ · ‖∗ε. Assume F ∈ tm+1. If the minimization problem (24) has a unique
solution P0, then Pε → Tm + P , where P ∈ A is uniquely determined by the
condition Tm+1(P ) = P0 − Tm(P0).

In the following example we present a function F ∈
⋂∞
m=0 t

m such that
T2(F ) /∈ A and the net {Ti(Pε)} does not converge for the same i > m+ 1.

Example 37 Set B = [−1, 1], ‖G‖ε =

(
1∫
−1
|G(x)|2dx

) 1
2

, F (x) = x, and

A = span{1, x2, x3}. So

‖G‖∗ε =

1

ε

ε∫
−ε

|G(x)|2dx

 1
2

,

A0 = A1 = span{x2, x3}, A2 = span{x3} and A3 = {0}. Since T1(x2) = 0,
we observe that the subspace A does not satisfies the condition (c2). Moreover,
an straightforward computation shows that

‖F − T0‖∗ε
ε0

=

√
6

3
ε and

‖F − Ts‖∗ε
εs

= 0, s ∈ N,

where T0(x) = 0 and Ts(x) = x. In consequence, F ∈ tm for all m ∈ N ∪ {0},

and T2(F ) /∈ A. Since
ε∫
−ε

(
x− 7

5ε2x
3
)
xidx = 0, i = 0, 2, 3, then Pε(x) = 7

5ε2x
3

is the best approximant to F from A respect to ‖·‖∗ε. Therefore Ti(Pε)(x)→ 0,
for i = 0, 1, 2, but T3(Pε)(x) does not converge, as ε → 0. So, the best local
approximation to F from A in 0 does not exist, and

‖Eε(F )‖ε =
‖F − Pε‖∗ε

ε3
=

2
√

6

15ε2
→∞, as ε→ 0.

We now give another example which shows that the condition Tm ∈ A is
not necessary for the existence of the best local approximation.
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Example 38 Set B, ‖ · ‖∗ε and F as in Example 37, and we consider the
subspace A = span{1, x2}. It is clear that A0 = A1 = span{x2}, A2 = {0}
and B = A. Moreover, F ∈ t2, T1 /∈ A, and A does not satisfy the condition

(c2) since T1(x2) = 0. As
ε∫
−ε

(x− 0)xidx = 0, i = 0, 2, then Pε(x) = 0 is the

best approximant to F from A respect to ‖ · ‖∗ε. Therefore, the polynomial 0 is
the best local approximation to F from A in 0.
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