On convergence of subspaces generated by horizontal dilations of polynomials. An application to best local approximation

F.E. Levis • C.V. Ridolfi

Received: date / Accepted: date

Abstract

In this paper we study the convergence of a net of subspaces generated by horizontal dilations of polynomials in a finite dimensional subspace. As a consequence, we extend the results given by Zó and Cuenya [Proceedings of the Second International School. Advanced Courses of Mathematical Analysis II. (2007), 193-213] on a general approach to the problems of best vectorvalued approximation on small regions from a finite dimensional subspace of polynomials.

Keywords Convergence of subspaces • Best local approximation • Abstract norms • Homogeneous dilations.

Mathematics Subject Classification (2010) 40A05 • 41A10 • 41A65

1 Introduction

Suppose that $\left\{a_{j}\right\}$ is a data set. This data are values of a function and its derivatives in a point. If we want to approximate these data using a polynomial of degree at most l, which will be the best algorithm to use? A Taylor polynomial of degree l is probably the most natural procedure to use.

[^0]The problem of finding an optimal algorithm to approximate a finite number of data corresponding to a function is developed in the best local approximation theory.

In 1934, Walsh proved in [9] that the Taylor polynomial of degree l for an analytic function f can be obtained by taking the limit as $\varepsilon \rightarrow 0$ of the best Chebyshev approximation to f from Π^{l} on the disk $|z| \leq \varepsilon$. This paper was the first association between the best local approximation to a function f from Π^{l} in 0 and the Taylor polynomial for f at the origin. However, the concept of best local approximation has been introduced and developed more recently by Chui, Shisha, and Smith in [1]. Later, several authors [2-8,10] have studied this problem.

We consider a family of function seminorms $\left\{\|\cdot\|_{\varepsilon}\right\}_{\varepsilon>0}$, acting on Lebesgue measurable functions $F: B \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$, where B is the unit ball centered at the origin in \mathbb{R}^{n}. We will use the notation $F^{\varepsilon}(x)=F(\varepsilon x)$ and $\|F\|_{\varepsilon}^{*}=\left\|F^{\varepsilon}\right\|_{\varepsilon}$. For $l \in \mathbb{N} \cup\{0\}$, we will denote by Π^{l} the class of algebraic polynomials in n-variables of degree at most l, and Π_{k}^{l} the set $\left\{P=\left(p_{1}, \ldots, p_{k}\right): p_{s} \in \Pi^{l}\right\}$.

Let \mathcal{A} be a subspace of Π_{k}^{l} and let $\left\{P_{\epsilon}\right\}_{\varepsilon>0}$ be a net of best approximants to F from \mathcal{A} respect to $\|\cdot\|_{\varepsilon}^{*}$, i.e.,

$$
\begin{equation*}
\left\|F-P_{\varepsilon}\right\|_{\varepsilon}^{*} \leq\|F-P\|_{\varepsilon}^{*}, \quad \text { for all } \quad P \in \mathcal{A} . \tag{1}
\end{equation*}
$$

If the net $\left\{P_{\epsilon}\right\}_{\varepsilon>0}$ has a limit in \mathcal{A} as $\epsilon \rightarrow 0$, this limit is called the best local approximation to F from \mathcal{A} in 0 . According to (1), we observe that $P_{\varepsilon}^{\varepsilon}$ is a polynomial in

$$
\begin{equation*}
\mathcal{A}^{\varepsilon}:=\left\{P^{\varepsilon}: P \in \mathcal{A}\right\} \subset \Pi_{k}^{l} \tag{2}
\end{equation*}
$$

of best approximation to F^{ε} by elements of the class $\mathcal{A}^{\varepsilon}$, respect to the seminorm $\|\cdot\|_{\varepsilon}$. We write it briefly by $P_{\varepsilon}^{\varepsilon} \in \mathcal{P}_{\mathcal{A}^{\varepsilon}, \varepsilon}\left(F^{\varepsilon}\right)$. Note that $\mathcal{A}^{\varepsilon}$ is a subspace generated by horizontal dilations the polynomials in \mathcal{A}.

From now on, we assume the following properties for the family of function seminorms $\|\cdot\|_{\varepsilon}, 0 \leq \varepsilon \leq 1$.
(1) For $F=\left(f_{1}, \ldots, f_{k}\right)$ and $G=\left(g_{1}, \ldots, g_{k}\right)$, we have $\|F\|_{\varepsilon} \leq\|G\|_{\varepsilon}$, for every $\varepsilon>0$, whenever $\left|f_{s}\right| \leq\left|g_{s}\right|, s=1, \ldots, k$.
(2) If 1 is the function $F(x)=(1, \ldots, 1)$, we have $\|1\|_{\varepsilon}<\infty$, for all $\varepsilon>0$.
(3) For every $F \in C_{k}(B)$, we have $\|F\|_{\varepsilon} \rightarrow\|F\|_{0}$, as $\varepsilon \rightarrow 0$, where $C_{k}(B)$ is the set of continuous functions $F: B \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$. Moreover, $\|\cdot\|_{0}$ is a norm on $C_{k}(B)$.
An important point to note here is that there exist positive constants $C=C(m, k)$ and $\varepsilon(m, k)$ such that for every $0<\varepsilon \leq \varepsilon(m, k)$,

$$
\begin{equation*}
\frac{1}{C}\|P\|_{0} \leq\|P\|_{\varepsilon} \leq C\|P\|_{0}, \quad \text { for every } \quad P \in \Pi_{k}^{m} \tag{3}
\end{equation*}
$$

[11, Proposition 3.1]. For examples of nets of seminorms fulfilling conditions (1)-(3), we refer the reader to [11].

We say that $F: B \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ has a Taylor polynomial of degree m at 0 , if there exists $P \in \Pi_{k}^{m}$ such that

$$
\|F-P\|_{\varepsilon}^{*}=o\left(\varepsilon^{m}\right), \quad \text { as } \quad \varepsilon \rightarrow 0 .
$$

It is well known that if it exists, it is unique and is denoted by $T_{m}=T_{m}(F)[11$, Proposition 3.3]. We write $F \in t^{m}$ if the function F has the Taylor polynomial of degree m at 0 . Moreover, if $F \in t^{m}$ and $T_{m}(F)=\sum_{|\alpha| \leq m} C_{\alpha} x^{\alpha}$, then the Taylor polynomial of degree $l \leq m$ for F at 0 , is given by $T_{l}(F)=\sum_{|\alpha| \leq l} C_{\alpha} x^{\alpha}$ [11, Proposition 3.5]. We set $\partial^{\alpha} F(0)$ for the vector $\alpha!C_{\alpha}$.

The problem of best local approximation with a family of function seminorms $\left\{\|\cdot\|_{\varepsilon}\right\}_{\varepsilon>0}$ satisfying (1)-(3) was considered in [11] for two types of approximation class \mathcal{A} fulfilling $\Pi_{k}^{m} \subset \mathcal{A} \subset \Pi_{k}^{l}$ and
(c1) $\mathcal{A}^{\varepsilon}=\mathcal{A}$, for each $\varepsilon>0$, or
(c2) if $P \in \mathcal{A}$ and $T_{m+1}(P)=0$, then $P=0$.
Firstly, the authors studied the asymptotic behavior of a normalized error function as $\varepsilon \rightarrow 0$ [11, Theorems 4.2 and 4.5]. Secondly, they showed that there exists the best local approximation to F in 0 and is associated with a Taylor polynomial for F in 0 [11, Theorem 5.1]. In particular, if $\mathcal{A}=\Pi_{k}^{m}$ and $F \in t^{m}$, they proved that $P_{\varepsilon} \rightarrow T_{m}(F)$, as $\varepsilon \rightarrow 0$ [11, Theorem 3.1].

In this work we generalize the results found in [11], without the restrictions (c1) or (c2) given above. For this, it is essential to study the convergence of the net $\left\{\mathcal{A}^{\varepsilon}\right\}$ as $\varepsilon \rightarrow 0$.

This paper is organized as follows. In Section 2, we investigate the asymptotic behavior of $\left\{\mathcal{A}^{\varepsilon}\right\}$. In Section 3, we study the asymptotic behavior of the error function $\varepsilon^{-m-1}\left(F_{\varepsilon}-P_{\varepsilon}\right)^{\varepsilon}$ for a suitable integer, and we show some results about the best local approximation in the origin which generalizes those of [11].

2 Asymptotic behavior of the net $\left\{\mathcal{A}^{\mathcal{E}}\right\}$

In this section, we study the asymptotic behavior of the net $\left\{\mathcal{A}^{\varepsilon}\right\}$ given in (2). We begin with the following definition.

Definition 21 Let $\mathcal{A} \subset \Pi_{k}^{l}$ be a subspace. We say that $P \in \lim _{\varepsilon \rightarrow 0} \mathcal{A}^{\varepsilon}$ if there exists a net $\left\{P_{\epsilon}\right\} \subset \mathcal{A}$ such that $\lim _{\varepsilon \rightarrow 0}\left\|P-P_{\epsilon}^{\varepsilon}\right\|_{0}=0$. We denote $\mathcal{B}=\lim _{\varepsilon \rightarrow 0} \mathcal{A}^{\varepsilon}$.
Remark 22 If $\mathcal{A} \subset \Pi_{k}^{l}$ is a subspace, then the sets $\mathcal{A}^{\varepsilon}$ and \mathcal{B} are also subspaces of Π_{k}^{l}. Furthermore, if $\mathcal{A}^{\varepsilon}=\mathcal{A}$, for all $\varepsilon>0$, we have that $\mathcal{B}=\mathcal{A}$.

Proposition 23 Let \mathcal{A} be a subspace of polynomials such that $\Pi_{k}^{m} \subset \mathcal{A}$ for some $m \in \mathbb{N} \cup\{0\}$ and $k \in \mathbb{N}$. Then $\Pi_{k}^{m} \subset \mathcal{A}^{\varepsilon}$ for all $\varepsilon>0$. Moreover, $\Pi_{k}^{m} \subset \mathcal{B}$.

Proof Set $R_{\alpha, i}(x)=x^{\alpha} e_{i},|\alpha| \leq m, 1 \leq i \leq k$, where $\left\{e_{i}\right\}_{i=1}^{k}$ is the canonical basis of \mathbb{R}^{k}. Then

$$
\begin{equation*}
\left\{R_{\alpha, i}:|\alpha| \leq m, 1 \leq i \leq k\right\} \tag{4}
\end{equation*}
$$

is a basis of the space Π_{k}^{m}. Since $\mathcal{A}^{\varepsilon}$ is a subspace, we have $R_{\alpha, i}=\frac{1}{\varepsilon|\alpha|} R_{\alpha, i}^{\varepsilon} \in$ $\mathcal{A}^{\varepsilon}$, and so $\Pi_{k}^{m} \subset \mathcal{A}^{\varepsilon}$, for all $\varepsilon>0$. Finally, using the definition of \mathcal{B}, we obtain $\Pi_{k}^{m} \subset \mathcal{B}$.

From now on, for any Lebesgue measurable function $F: B \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ we denote $T_{-1}(F)=0$.

Proposition 24 Let \mathcal{A} be a subspace of Π_{k}^{l} and let $0 \leq s+1 \leq l$ be an integer. If $P \in \mathcal{A}$ satisfies $T_{s}(P)=0$ and $T_{s+1}(P) \neq 0$, then $T_{s+1}(P) \in \mathcal{B}$.

Proof For each $\varepsilon>0$ we define $Q_{\varepsilon}=\frac{P}{\varepsilon^{s+1}} \in \mathcal{A}$. Since $T_{s}(P)=0$, it follows that $\left\|T_{s+1}(P)-Q_{\varepsilon}^{\varepsilon}\right\|_{0}=\frac{\left\|\left(T_{s+1}(P)-P\right)^{\varepsilon}\right\|_{0}}{\varepsilon^{s+1}}$. So $\left\|T_{s+1}(P)-Q_{\varepsilon}^{\varepsilon}\right\|_{0}=o(1)$ as $\varepsilon \rightarrow 0$, and thus $T_{s+1}(P) \in \mathcal{B}$.

The following sets will be needed throughout the paper. Let \mathcal{A} be a nonzero subspace of Π_{k}^{l}. We define

$$
\begin{equation*}
A_{-1}:=\mathcal{A} \quad \text { and } \quad A_{j}:=\left\{P \in \mathcal{A}: T_{j}(P)=0\right\} \quad \text { for } \quad 0 \leq j \leq l . \tag{5}
\end{equation*}
$$

We note that

$$
A_{j} \subset A_{i} \quad \text { whenever } \quad i<j .
$$

Since $A_{l} \subset\left\{P \in \Pi_{k}^{l}: T_{l}(P)=0\right\}=\{0\}$, we have

$$
\left\{j: 0 \leq j \leq l \text { and } A_{j} \neq \mathcal{A}\right\} \neq \emptyset \text { and }\left\{j: 0 \leq j \leq l \text { and } A_{j}=\{0\}\right\} \neq \emptyset
$$

Set

$$
s_{0}=\min \left\{j: 0 \leq j \leq l \text { and } A_{j} \neq \mathcal{A}\right\}
$$

and

$$
r_{0}=\min \left\{j: 0 \leq j \leq l \text { and } A_{j}=\{0\}\right\} .
$$

It easy to see that $0 \leq s_{0} \leq r_{0} \leq l$, and

$$
\begin{equation*}
s_{0}, r_{0} \in\left\{j: s_{0} \leq j \leq r_{0} \text { and } A_{j} \subsetneq A_{j-1}\right\}=: J . \tag{6}
\end{equation*}
$$

We can now formulate our main result which describes the limit set \mathcal{B}.
Theorem 25 Let \mathcal{A} be a non-zero subspace of Π_{k}^{l}. Then \mathcal{B} is a subspace of $\Pi_{k}^{r_{0}}$ isomorphic to \mathcal{A}. Furthermore, under the above notation it is verified that
(a) if $s_{0}<r_{0}$ and $J \backslash\left\{r_{0}\right\}=\left\{s_{0}, \ldots, s_{N}\right\}$ with $s_{i}<s_{i+1}$ for $N>0$, then $\mathcal{B}=T_{r_{0}}\left(A_{s_{N}}\right) \oplus T_{s_{N}}\left(S_{s_{N}}\right) \oplus T_{s_{N-1}}\left(S_{s_{N-1}}\right) \oplus \ldots \oplus T_{s_{0}}\left(S_{s_{0}}\right)$, where $A_{s_{i}} \oplus S_{s_{i}}=$ $A_{s_{i}-1}, 0 \leq i \leq N$;
(b) if $s_{0}=r_{0}$, then $\mathcal{B}=T_{r_{0}}(\mathcal{A})$.

Proof (a) Assume $s_{0}<r_{0}$. Since every subspace of $A_{s_{i}-1}, 0 \leq i \leq N$, has a complement, there exists a subspace $S_{s_{i}} \subset A_{s_{i}-1}$ such that

$$
\begin{equation*}
A_{s_{i}} \oplus S_{s_{i}}=A_{s_{i}-1}, \quad 0 \leq i \leq N \tag{7}
\end{equation*}
$$

In consequence,

$$
\begin{equation*}
\mathcal{A}=A_{s_{N}} \oplus S_{s_{N}} \oplus S_{s_{N-1}} \oplus \ldots \oplus S_{s_{0}} . \tag{8}
\end{equation*}
$$

As $S_{s_{i}} \subset A_{s_{i}-1}, 0 \leq i \leq N$, and $A_{r_{0}-1}=A_{s_{N}}$ we obtain

$$
Q(x)= \begin{cases}\sum_{|\alpha| \geq s_{i}} \frac{\partial^{\alpha} Q(0)}{\alpha!} x^{\alpha}, & \text { if } Q \in S_{s_{i}}, \quad 0 \leq i \leq N . \tag{9}\\ \sum_{|\alpha| \geq s_{N+1}} \frac{\partial^{\alpha} Q(0)}{\alpha!} x^{\alpha}, & \text { if } Q \in A_{s_{N}} .\end{cases}
$$

where $s_{N+1}=r_{0}$. Let $T_{i}: S_{s_{i}} \rightarrow \Pi_{k}^{s_{i}}$ be a linear operator defined by $T_{i}(P)=T_{s_{i}}(P), 0 \leq i \leq N$, and $T_{N+1}: \mathcal{A} \rightarrow \Pi_{k}^{s_{N+1}}$ be the linear operator given by $T_{N+1}(P)=T_{s_{N+1}}(P)$. We claim that
(i) T_{i} is an injective operator, $0 \leq i \leq N+1$.
(ii) $T_{s_{N+1}}\left(A_{s_{N}}\right) \cap \sum_{i=0}^{N} T_{s_{i}}\left(S_{s_{i}}\right)=\{0\}$.
(iii) If $N>0$ then $T_{s_{l}}\left(S_{s_{l}}\right) \cap\left(T_{s_{N+1}}\left(A_{s_{N}}\right)+\sum_{i=0, i \neq l}^{N} T_{s_{i}}\left(S_{s_{i}}\right)\right)=\{0\}$ whenever $l \neq i$.
Indeed, let $0 \leq i \leq N$. If $T_{s_{i}}(P)=T_{s_{i}}(Q)$ for some $P, Q \in S_{s_{i}}$, then $P-Q \in A_{s_{i}} \cap S_{s_{i}}$. So (7) implies that $P=Q$. On the other hand, if $T_{s_{N+1}}(P)=T_{s_{N+1}}(Q)$ with $P, Q \in \mathcal{A}$, then $P-Q \in A_{s_{N+1}}=\{0\}$, which proves (i). To prove (ii) we consider $Q_{N+1} \in A_{s_{N}}$ and $Q_{i} \in S_{s_{i}}$ such that $P=T_{s_{N+1}}\left(Q_{N+1}\right)=\sum_{i=0}^{N} T_{s_{i}}\left(Q_{i}\right)$. From (9) we see that

$$
\begin{equation*}
T_{s_{N+1}}\left(Q_{N+1}\right)(x)=\sum_{|\alpha|=s_{N+1}} \frac{\partial^{\alpha} Q_{N}(0)}{\alpha!} x^{\alpha} \quad \text { and } \quad \sum_{i=0}^{N} T_{s_{i}}\left(Q_{i}\right) \in \Pi_{k}^{s_{N}} \tag{10}
\end{equation*}
$$

Therefore $P=0$. Now, let $Q_{N+1} \in A_{s_{N}}$ and $Q_{i} \in S_{s_{i}}$ be such that

$$
\begin{equation*}
P=T_{s_{l}}\left(Q_{l}\right)=T_{s_{N+1}}\left(Q_{N+1}\right)+\sum_{i=0, i \neq l}^{N} T_{s_{i}}\left(Q_{i}\right) \tag{11}
\end{equation*}
$$

From (9) it follows that

$$
T_{s_{i}}\left(Q_{i}\right)=\sum_{|\alpha|=s_{i}} \frac{\partial^{\alpha} Q_{i}(0)}{\alpha!} x^{\alpha}, \quad 0 \leq i \leq N
$$

According to (10) and (11) we have $P=0$, and (iii) is proved.
Using (i)-(iii), we deduce that the subspace

$$
T_{s_{N+1}}\left(A_{s_{N}}\right)+T_{s_{N}}\left(S_{s_{N}}\right)+T_{s_{N-1}}\left(S_{s_{N-1}}\right)+\ldots+T_{s_{0}}\left(S_{s_{0}}\right)
$$

is a direct sum isomorphic to \mathcal{A}. The proof concludes by proving

$$
\begin{equation*}
\mathcal{B}=T_{s_{N+1}}\left(A_{s_{N}}\right) \oplus T_{s_{N}}\left(S_{s_{N}}\right) \oplus T_{s_{N-1}}\left(S_{s_{N-1}}\right) \oplus \ldots \oplus T_{s_{0}}\left(S_{s_{0}}\right) \tag{12}
\end{equation*}
$$

We observe that if $P \in S_{s_{i}} \backslash\{0\}$, then $T_{s_{i}}(P) \neq 0$ and $T_{s_{i}-1}(P)=0$ by (7). So, Proposition 24 implies that $T_{s_{i}}(P) \in \mathcal{B}$. On the other hand, if $P \in A_{s_{N}} \backslash\{0\}$, we get $T_{s_{N}}(P)=0$. Moreover, we have $T_{s_{N+1}}(P) \neq 0$. In fact, on the contrary, we see that $P \in A_{s_{N+1}}=\{0\}$. Proposition 24 now gives $T_{s_{N+1}}(P) \in \mathcal{B}$. Therefore,

$$
T_{s_{N+1}}\left(A_{s_{N}}\right) \oplus T_{s_{N}}\left(S_{s_{N}}\right) \oplus T_{s_{N-1}}\left(S_{s_{N-1}}\right) \oplus \ldots \oplus T_{s_{0}}\left(S_{s_{0}}\right) \subset \mathcal{B}
$$

On the other hand, if $P \in \mathcal{B}$, there exists $\left\{P_{\epsilon}\right\} \subset \mathcal{A}$ such that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left\|P-P_{\epsilon}^{\varepsilon}\right\|_{0}=0 \tag{13}
\end{equation*}
$$

Let $d_{N+1}=\operatorname{dim}\left(A_{s_{N}}\right)$ and $d_{i}=\operatorname{dim}\left(S_{s_{i}}\right), 0 \leq i \leq N$. We take $\left\{v_{l}\right\}_{l=1}^{d_{N+1}}$ and $\left\{w_{i r}\right\}_{r=1}^{d_{i}}$ basis of $A_{s_{N}}$, and $S_{s_{i}}$ respectively. It is easy to check that for each
$0<\varepsilon \leq 1,\left\{\varepsilon^{-s_{N+1}} v_{l}\right\}_{l=1}^{a}$ is a basis of $A_{s_{N}}$ and $\left\{\varepsilon^{-s_{i}} w_{i r}\right\}_{r=1}^{d_{i}}$ is a basis of $S_{s_{i}}$, $0 \leq i \leq N$. According to (8), we have that there exist real numbers. $D_{l, \varepsilon}, C_{i, r, \varepsilon}$ such that

$$
P_{\varepsilon}=\sum_{l=1}^{d_{N+1}} \varepsilon^{-s_{N+1}} D_{l, \varepsilon} v_{l}+\sum_{i=0}^{N} \sum_{r=1}^{d_{i}} \varepsilon^{-s_{i}} C_{i, r, \varepsilon} w_{i r} .
$$

From (9) it follows that

$$
v_{l}(x)=\sum_{|\alpha| \geq s_{N+1}} \frac{\partial^{\alpha} v_{l}(0)}{\alpha!} x^{\alpha} \quad \text { and } \quad w_{i r}(x)=\sum_{|\alpha| \geq s_{i}} \frac{\partial^{\alpha} w_{i r}(0)}{\alpha!} x^{\alpha} .
$$

Consequently,

$$
\begin{aligned}
& P_{\varepsilon}^{\varepsilon}(x)=\sum_{l=1}^{d_{N+1}} D_{l, \varepsilon} \varepsilon^{-s_{N+1}} v_{l}^{\varepsilon}(x)+\sum_{i=0}^{N} \sum_{r=1}^{d_{i}} C_{i, r, \varepsilon} \varepsilon^{-s_{i}} w_{i r}^{\varepsilon}(x) \\
& =\sum_{l=1}^{d_{N+1}} \sum_{|\alpha|=s_{N+1}} D_{l, \varepsilon} \frac{\partial^{\alpha} v_{l}(0)}{\alpha!} x^{\alpha}+\sum_{l=1}^{d_{N+1}} \sum_{|\alpha|>s_{N+1}} D_{l, \varepsilon} \varepsilon^{|\alpha|-s_{N+1}} \frac{\partial^{\alpha} v_{l}(0)}{\alpha!} x^{\alpha} \\
& +\sum_{i=0}^{N} \sum_{r=1}^{d_{i}} \sum_{|\alpha|=s_{i}} C_{i, r, \varepsilon} \frac{\partial^{\alpha} w_{i r}(0)}{\alpha!} x^{\alpha}+\sum_{i=0}^{N} \sum_{r=1}^{d_{i}} \sum_{|\alpha|>s_{i}} C_{i, r, \varepsilon} \varepsilon^{|\alpha|-s_{i}} \frac{\partial^{\alpha} w_{i r}(0)}{\alpha!} x^{\alpha} \\
& =\sum_{l=1}^{d_{N+1}} D_{l, \varepsilon} T_{s_{N+1}}\left(v_{l}\right)(x)+\sum_{i=0}^{N}\left(\sum_{r=1}^{d_{i}} C_{i, r, \varepsilon} T_{s_{i}}\left(w_{i r}\right)(x)\right) \\
& +\sum_{l=1}^{d_{N+1}} \sum_{|\alpha|>s_{N+1}} D_{l, \varepsilon} \varepsilon^{|\alpha|-s_{N+1}} \frac{\partial^{\alpha} v_{l}(0)}{\alpha!} x^{\alpha} \\
& +\sum_{i=0}^{N} \sum_{r=1}^{d_{i}} \sum_{|\alpha|>s_{i}} C_{i, r, \varepsilon} \varepsilon^{|\alpha|-s_{i}} \frac{\partial^{\alpha} w_{i r}(0)}{\alpha!} x^{\alpha} .
\end{aligned}
$$

An straightforward computation shows that

$$
\begin{aligned}
T_{s_{0}}\left(P_{\varepsilon}^{\varepsilon}\right)(x) & =\sum_{r=1}^{d_{0}} C_{0, r, \varepsilon} T_{s_{0}}\left(w_{0 r}\right)(x) \\
T_{s_{j}}\left(P_{\varepsilon}^{\varepsilon}\right)(x) & =T_{s_{j-1}}\left(P_{\varepsilon}^{\varepsilon}\right)(x)+\sum_{i=0}^{j-1} \sum_{r=1}^{d_{i}} \sum_{s_{i}<|\alpha| \leq s_{j}} C_{i, r, \varepsilon} \varepsilon{ }^{|\alpha|-s_{i}} \frac{\partial^{\alpha} w_{i r}(0)}{\alpha!} x^{\alpha} \\
& +\sum_{r=1}^{d_{j}} C_{j, r, \varepsilon} T_{s_{j}}\left(w_{j r}\right)(x)
\end{aligned}
$$

$1 \leq j \leq N$, and

$$
\begin{aligned}
T_{s_{N+1}}\left(P_{\varepsilon}^{\varepsilon}\right)(x) & =T_{s_{N}}\left(P_{\varepsilon}^{\varepsilon}\right)(x)+\sum_{i=0}^{N} \sum_{r=1}^{d_{i}} \sum_{s_{i}<|\alpha| \leq s_{N+1}} C_{i, r, \varepsilon} \varepsilon^{|\alpha|-s_{i}} \frac{\partial^{\alpha} w_{i r}(0)}{\alpha!} x^{\alpha} \\
& +\sum_{l=1}^{d_{N+1}} D_{l, \varepsilon} T_{s_{N+1}}\left(v_{l}\right)(x)
\end{aligned}
$$

Since $\left\{T_{s_{N+1}}\left(v_{l}\right)\right\}_{l=1}^{a}$ is a basis of $T_{s_{N+1}}\left(A_{s_{N}}\right)$ and $\left\{T_{i}\left(w_{i r}\right)\right\}_{r=1}^{d_{i}}$ is a basis of $T_{i}\left(S_{s_{i}}\right), 0 \leq i \leq N,(13)$ shows that there are real numbers. D_{l} and $C_{i, r}$ such that $D_{l, \varepsilon,} \rightarrow D_{l}$ and $C_{i, r, \varepsilon} \rightarrow C_{i, r}$, as $\varepsilon \rightarrow 0$. In consequence,

$$
P=\sum_{l=1}^{a} D_{l} T_{s_{N+1}}\left(v_{l}\right)+\sum_{i=0}^{N}\left(\sum_{r=1}^{d_{i}} C_{i, r} T_{s_{i}}\left(w_{i r}\right)\right)
$$

and so $P \in T_{s_{N+1}}\left(A_{s_{N}}\right) \oplus T_{s_{N}}\left(S_{s_{N}}\right) \oplus T_{s_{N-1}}\left(S_{s_{N-1}}\right) \oplus \ldots \oplus T_{s_{0}}\left(S_{s_{0}}\right)$.
(b) Now assume $s_{0}=r_{0}$, i.e. $A_{s_{0}}=\{0\}$. Then \mathcal{A} has the form (8) with $N=0$, $A_{s_{0}}=\{0\}$ and $S_{s_{0}}=\mathcal{A}$. An analysis similar to the proof of (a) shows that $T_{r_{0}}$ is an isomorphism and $\mathcal{B}=T_{s_{0}}\left(S_{s_{0}}\right)=T_{r_{0}}(\mathcal{A})$.

The following corollary follows immediately from the proof of Theorem 25.
Corollary 26 Let \mathcal{A} be a non-zero subspace of Π_{k}^{l}. Then $\lim _{n \rightarrow \infty} \mathcal{A}^{\varepsilon_{n}}=\mathcal{B}$ for any sequence $\left\{\varepsilon_{n}\right\}$ of the net $\epsilon \downarrow 0$.

Remark $27 \mathcal{B}$ is isomorphic to $T_{r_{0}}(\mathcal{A})$.
Corollary 28 Let $s \geq m+1$ and let $\mathcal{A}=\Pi_{k}^{m} \oplus A_{s-1}$ be such that $A_{s}=\{0\}$. Then $\mathcal{B}=\Pi_{k}^{m} \oplus T_{s}\left(A_{s-1}\right)$ and the linear operator $T: \mathcal{A} \rightarrow \Pi_{k}^{s}$ given by $T(P)=T_{s}(P)$ define an isomorphism between \mathcal{A} and \mathcal{B}.

Proof We first claim that T is an injective operator. Indeed, if $T(P)=T(Q)$ for $P, Q \in \mathcal{A}$, then $T_{s}(P-Q)=0$ and so $P-Q \in A_{s}$. Since $A_{s}=\{0\}$, we have $P=Q$.
As \mathcal{A} is isomorphic to $T(\mathcal{A})$, the proof concludes by proving $\mathcal{B}=\Pi_{k}^{m} \oplus$ $T_{s}\left(A_{s-1}\right)=T_{s}(\mathcal{A})$.
Let A_{j} be the sets defined in (5). Since

$$
\{0\}=A_{s} \subsetneq A_{s-1}=\ldots=A_{m} \subsetneq A_{m-1} \subsetneq \ldots \subsetneq A_{0} \subsetneq \mathcal{A}
$$

then $\mathcal{A}=A_{s-1} \oplus B_{m} \oplus B_{m-1} \oplus \ldots \oplus B_{0}$, where $A_{i} \oplus B_{i}=A_{i-1}, 0 \leq i \leq m$. Therefore Π_{k}^{m} is isomorphic to $B_{m} \oplus \ldots \oplus B_{0}$. On the other hand, since $s_{0}=0$, $r_{0}=s$ and $J \backslash\left\{r_{0}\right\}=\{0,1, \ldots, m\}$, by Proposition 25 (a),

$$
\mathcal{B}=T_{s}\left(A_{s-1}\right) \oplus T_{m}\left(B_{m}\right) \oplus \ldots \oplus T_{0}\left(B_{0}\right)
$$

From the proof of Theorem 25, we obtain that $B_{m} \oplus \ldots \oplus B_{0}$ is isomorphic to $T_{m}\left(B_{m}\right) \oplus \ldots \oplus T_{0}\left(B_{0}\right)$, and consequently Π_{k}^{m} is isomorphic to $T_{m}\left(B_{m}\right) \oplus \ldots \oplus$ $T_{0}\left(B_{0}\right) \subset \Pi_{k}^{m}$. Hence, $T_{m}\left(B_{m}\right) \oplus \ldots \oplus T_{0}\left(B_{0}\right)=\Pi_{k}^{m}$ and so $\mathcal{B}=T_{s}\left(A_{s-1}\right) \oplus$ $\Pi_{k}^{m}=T_{s}\left(A_{s-1}\right) \oplus T_{s}\left(\Pi_{k}^{m}\right)=T_{s}(\mathcal{A})$.

3 An application to best local approximation

Let $\left\{P_{\epsilon}\right\}$ be a net of best approximants to F from \mathcal{A} respect to $\|\cdot\|_{\varepsilon}^{*}$, and let E_{ε} be the error function

$$
E_{\varepsilon}(F)=\frac{F^{\varepsilon}-P_{\varepsilon}^{\varepsilon}}{\varepsilon^{m+1}}
$$

If $F \in t^{m+1}$, then

$$
F^{\varepsilon}=T_{m+1}^{\varepsilon}+\varepsilon^{m+1} R_{m+1}^{\varepsilon} \quad \text { where } \quad R_{m+1}=\frac{F-T_{m+1}}{\varepsilon^{m+1}}, \quad\left\|R_{m+1}^{\varepsilon}\right\|_{\varepsilon}=o(1)
$$

and T_{m+1} is the Taylor polynomial of F of degree $m+1$ at 0 . Moreover,

$$
\lambda P_{\varepsilon}^{\varepsilon} \in \mathcal{P}_{\mathcal{A}^{\varepsilon}, \varepsilon}\left(\lambda F^{\varepsilon}\right) \quad \text { and } \quad P^{\varepsilon}+P_{\varepsilon}^{\varepsilon} \in \mathcal{P}_{\mathcal{A}^{\varepsilon}, \varepsilon}\left((P+F)^{\varepsilon}\right), \quad \text { for } \quad P \in \mathcal{A} .
$$

The following proposition may be proved in much the same way as [11, Proposition 4.1]. However, we repeat the proof by completeness.

Proposition 31 Let \mathcal{A} be a non-zero subspace of Π_{k}^{l} with $l>m$, and let $\left\{P_{\epsilon}\right\}$ be a net of best approximants of F from \mathcal{A} respect to $\|\cdot\|_{\varepsilon}^{*}$. If $F \in t^{m+1}$, $T_{m} \in \mathcal{A}$ and $\phi_{m+1}=T_{m+1}-T_{m}$, then

$$
E_{\varepsilon}(F)=\phi_{m+1}+R_{m+1}^{\varepsilon}-\mathcal{P}_{\mathcal{A}^{\varepsilon}, \varepsilon}\left(\phi_{m+1}+R_{m+1}^{\varepsilon}\right)
$$

where $\left\|R_{m+1}^{\varepsilon}\right\|_{\varepsilon}=o(1)$, as $\varepsilon \rightarrow 0$.
Proof Since $R_{m+1}^{\varepsilon}=\frac{F^{\varepsilon}-T_{m+1}^{\varepsilon}}{\varepsilon^{m+1}}$, then

$$
\begin{aligned}
\phi_{m+1}+R_{m+1}^{\varepsilon} & =T_{m+1}-T_{m}+\frac{F^{\varepsilon}-T_{m+1}^{\varepsilon}}{\varepsilon^{m+1}}=\frac{T_{m+1}^{\varepsilon}-T_{m}^{\varepsilon}}{\varepsilon^{m+1}}+\frac{F^{\varepsilon}-T_{m+1}^{\varepsilon}}{\varepsilon^{m+1}} \\
& =\frac{F^{\varepsilon}-T_{m}^{\varepsilon}}{\varepsilon^{m+1}}
\end{aligned}
$$

As $T_{m} \in \mathcal{A}$, we have

$$
\begin{aligned}
\phi_{m+1}+R_{m+1}^{\varepsilon}-\mathcal{P}_{\mathcal{A}^{\varepsilon}, \varepsilon}\left(\phi_{m+1}+R_{m+1}^{\varepsilon}\right) & =\frac{F^{\varepsilon}-T_{m}^{\varepsilon}}{\varepsilon^{m+1}}-P_{\mathcal{A}^{\varepsilon}, \varepsilon}\left(\frac{F^{\varepsilon}-T_{m}^{\varepsilon}}{\varepsilon^{m+1}}\right) \\
& =\frac{F^{\varepsilon}-P_{\varepsilon}^{\varepsilon}}{\varepsilon^{m+1}}=E_{\varepsilon}(F) .
\end{aligned}
$$

Next, we give a new result about the asymptotic behavior of error without the conditions (c1) or (c2), which generalizes Theorems 4.2 and 4.5 given in [11].

Theorem 32 Let \mathcal{A} be a non-zero subspace of Π_{k}^{l} with $l>m$. If $F \in t^{m+1}$, $T_{m} \in \mathcal{A}$ and $\phi_{m+1}=T_{m+1}-T_{m}$, then

$$
\left\|E_{\varepsilon}(F)\right\|_{\varepsilon} \rightarrow \inf _{P \in \mathcal{B}}\left\|\phi_{m+1}-P\right\|_{0}, \quad \text { as } \quad \varepsilon \rightarrow 0
$$

Proof By Proposition 31,

$$
\begin{equation*}
E_{\varepsilon}(F)=\phi_{m+1}+R_{m+1}^{\varepsilon}-\mathcal{P}_{\mathcal{A}^{\varepsilon}, \varepsilon}\left(\phi_{m+1}+R_{m+1}^{\varepsilon}\right) \tag{14}
\end{equation*}
$$

where $\left\|R_{m+1}^{\varepsilon}\right\|_{\varepsilon}=o(1)$ as $\varepsilon \rightarrow 0$. We first prove

$$
\begin{equation*}
\varlimsup_{\varepsilon \rightarrow 0}\left\|E_{\varepsilon}(F)\right\|_{\varepsilon} \leq \inf _{P \in B}\left\|\phi_{m+1}-P\right\|_{0} \tag{15}
\end{equation*}
$$

In fact, let $P \in \mathcal{B}$. By the definition of \mathcal{B}, there exists a net $\left\{Q_{\varepsilon}\right\} \subset \mathcal{A}$ such that $\left\|P-Q_{\varepsilon}^{\varepsilon}\right\|_{0} \rightarrow 0$, as $\varepsilon \rightarrow 0$. In consequence, $\left\|P-Q_{\varepsilon}^{\varepsilon}\right\|_{\varepsilon}=o(1)$, as $\varepsilon \rightarrow 0$, by (3). Since $Q_{\varepsilon}^{\varepsilon} \in \mathcal{A}^{\varepsilon}$ and $\left\|R_{m+1}^{\varepsilon}\right\|_{\varepsilon}=o(1)$, from (14) we obtain

$$
\begin{equation*}
\left\|E_{\varepsilon}(F)\right\|_{\varepsilon} \leq\left\|\phi_{m+1}+R_{m+1}^{\varepsilon}-Q_{\varepsilon}^{\varepsilon}\right\|_{\varepsilon} \leq\left\|\phi_{m+1}-Q_{\varepsilon}^{\varepsilon}\right\|_{\varepsilon}+o(1), \quad \text { as } \quad \varepsilon \rightarrow 0 \tag{16}
\end{equation*}
$$

By Property (3), $\left\|\phi_{m+1}-P\right\|_{\varepsilon} \rightarrow\left\|\phi_{m+1}-P\right\|_{0}$, as $\varepsilon \rightarrow 0$. Hence, using Triangle Inequality we have

$$
\begin{aligned}
\mid\left\|\phi_{m+1}-Q_{\varepsilon}^{\varepsilon}\right\|_{\varepsilon} & -\left\|\phi_{m+1}-P\right\|_{0}\left|\leq\left|\left\|\phi_{m+1}-Q_{\varepsilon}^{\varepsilon}\right\|_{\varepsilon}-\left\|\phi_{m+1}-P\right\|_{\varepsilon}\right|\right. \\
& +\left|\left\|\phi_{m+1}-P\right\|_{\varepsilon}-\left\|\phi_{m+1}-P\right\|_{0}\right| \\
& \leq\left\|P-Q_{\varepsilon}^{\varepsilon}\right\|_{\varepsilon}+\left|\left\|\phi_{m+1}-P\right\|_{\varepsilon}-\left\|\phi_{m+1}-P\right\|_{0}\right|=o(1)
\end{aligned}
$$

as $\varepsilon \rightarrow 0$. Now, according to (16) we get (15).
The proof finishes by observing that

$$
\begin{equation*}
\varliminf_{\varepsilon \rightarrow 0}\left\|E_{\varepsilon}(F)\right\|_{\varepsilon} \geq \inf _{P \in \mathcal{B}}\left\|\phi_{m+1}-P\right\|_{0} \tag{17}
\end{equation*}
$$

Let $\varepsilon \downarrow 0$ be a sequence such that $\lim _{\varepsilon \rightarrow 0}\left\|E_{\varepsilon}(F)\right\|_{\varepsilon}=\underline{\lim }_{\varepsilon \rightarrow 0}\left\|E_{\varepsilon}(F)\right\|_{\varepsilon}$. We consider $P_{\varepsilon}^{\varepsilon} \in \mathcal{P}_{\mathcal{A}^{\varepsilon}, \varepsilon}\left(\phi_{m+1}+R_{m+1}^{\varepsilon}\right)$. We claim that there exist constants $M, \varepsilon_{0}>0$ such that

$$
\begin{equation*}
\left\|P_{\varepsilon}^{\varepsilon}\right\|_{0} \leq M, \quad 0<\varepsilon \leq \varepsilon_{0} . \tag{18}
\end{equation*}
$$

Indeed, as $0 \in \mathcal{A}^{\mathcal{\varepsilon}}$ we get

$$
\begin{align*}
\left\|P_{\varepsilon}^{\varepsilon}\right\|_{\varepsilon} & \leq\left\|P_{\varepsilon}^{\varepsilon}-\left(\phi_{m+1}+R_{m+1}^{\varepsilon}\right)\right\|_{\varepsilon}+\left\|\phi_{m+1}+R_{m+1}^{\varepsilon}\right\|_{\varepsilon} \\
& \leq 2\left\|\phi_{m+1}+R_{m+1}^{\varepsilon_{n}}\right\|_{\varepsilon} \tag{19}\\
& \leq 2\left\|\phi_{m+1}\right\|_{\varepsilon}+2\left\|R_{m+1}^{\varepsilon}\right\|_{\varepsilon}
\end{align*}
$$

for $0<\varepsilon \leq 1$. By Proposition 31 and Property (3), we see that $2\left\|\phi_{m+1}\right\|_{\varepsilon}+$ $2\left\|R_{m+1}^{\varepsilon}\right\|_{\varepsilon} \rightarrow 2\left\|\phi_{m+1}\right\|_{0}$, as $\varepsilon \rightarrow 0$. So, from (3) and (19), we obtain (18).
In consequence, there exists a subsequence of $\left\{P_{\varepsilon}^{\varepsilon}\right\}$, which is denoted in the same way, and $P_{0} \in \Pi_{k}^{l}$ such that $P_{\varepsilon}^{\varepsilon} \rightarrow P$ uniformly on B, as $\varepsilon \rightarrow 0$. Since $\left|\left|\left|\phi_{m+1}-P_{\varepsilon}^{\varepsilon}\left\|_{\varepsilon}-\right\| \phi_{m+1}-P\left\|_{0}\left|\leq\left|\left|\left|\phi_{m+1}-P_{\varepsilon}^{\varepsilon}\left\|_{\varepsilon}-\right\| \phi_{m+1}-P\left\|_{\varepsilon}|+|\right\| \phi_{m+1}-\right.\right.\right.\right.\right.\right.\right.\right.$ $P\left\|_{\varepsilon}-\right\| \phi_{m+1}-P\left\|_{0}\left|\leq\left\|P-P_{\varepsilon}^{\varepsilon}\right\|_{\varepsilon}+\left|\left\|\phi_{m+1}-P\right\|_{\varepsilon}-\left\|\phi_{m+1}-P\right\|_{0}\right|\right.\right.$, using Property (3) we get

$$
\left\|\phi_{m+1}-P\right\|_{0}=\left\|\phi_{m+1}-P_{\varepsilon}^{\varepsilon}\right\|_{\varepsilon}+o(1), \quad \text { as } \quad \varepsilon \rightarrow 0
$$

We observe that $P \in B$ by Corolary 26. Therefore, by Proposition 31,

$$
\begin{aligned}
\inf _{Q \in \mathcal{B}}\left\|\phi_{m+1}-Q\right\|_{0} & \leq\left\|\phi_{m+1}-P\right\|_{0}=\left\|\phi_{m+1}-P_{\varepsilon}^{\varepsilon}\right\|_{\varepsilon}+o(1) \\
& \leq\left\|\phi_{m+1}+R_{m+1}^{\varepsilon}-P_{\varepsilon}^{\varepsilon}\right\|_{\varepsilon}+\left\|R_{m+1}^{\varepsilon}\right\|_{\varepsilon} \\
& =\left\|E_{\varepsilon}(F)\right\|_{\varepsilon}+\left\|R_{m+1}^{\varepsilon}\right\|_{\varepsilon} .
\end{aligned}
$$

 (17) is proved.

The following result provides us with a useful and important property for a net of best approximants to F from \mathcal{A}.

Theorem 33 Let \mathcal{A} be a non-zero subspace of Π_{k}^{l} with $l>m$, and let $\left\{P_{\epsilon}\right\}$ be a net of best approximants of F from \mathcal{A} respect to $\|\cdot\|_{\varepsilon}^{*}$. Assume $F \in t^{m+1}$, $T_{m} \in \mathcal{A}$ and $\phi_{m+1}=T_{m+1}-T_{m}$. If \mathcal{C} is the cluster point set of the net $\left\{\frac{\left(P_{\varepsilon}-T_{m}\right)^{\varepsilon}}{\varepsilon^{m+1}}\right\}$, as $\varepsilon \rightarrow 0$, then $\mathcal{C} \neq \emptyset$. Moreover, each polynomial in \mathcal{C} is a solution of the minimization problem:

$$
\begin{equation*}
\min _{P \in \mathcal{B}}\left\|\phi_{m+1}-P\right\|_{0} \tag{20}
\end{equation*}
$$

Proof We observe

$$
\begin{aligned}
E_{\varepsilon}(F) & =\frac{\left(F-P_{\varepsilon}\right)^{\varepsilon}}{\varepsilon^{m+1}}=\frac{\left(T_{m+1}-T_{m}\right)^{\varepsilon}+\left(F-T_{m+1}\right)^{\varepsilon}-\left(P_{\varepsilon}-T_{m}\right)^{\varepsilon}}{\varepsilon^{m+1}} \\
& =\frac{\phi_{m+1}^{\varepsilon}-\left(P_{\varepsilon}-T_{m}\right)^{\varepsilon}}{\varepsilon^{m+1}}+\frac{\left(F-T_{m+1}\right)^{\varepsilon}}{\varepsilon^{m+1}} \\
& =\phi_{m+1}-\frac{\left(P_{\varepsilon}-T_{m}\right)^{\varepsilon}}{\varepsilon^{m+1}}+\frac{\left(F-T_{m+1}\right)^{\varepsilon}}{\varepsilon^{m+1}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\left\|\phi_{m+1}-\frac{\left(P_{\varepsilon}-T_{m}\right)^{\varepsilon}}{\varepsilon^{m+1}}\right\|_{\varepsilon} & -\frac{\left\|\left(F-T_{m+1}\right)^{\varepsilon}\right\|_{\varepsilon}}{\varepsilon^{m+1}} \leq\left\|E_{\varepsilon}(F)\right\|_{\varepsilon} \\
& \leq\left\|\phi_{m+1}-\frac{\left(P_{\varepsilon}-T_{m}\right)^{\varepsilon}}{\varepsilon^{m+1}}\right\|_{\varepsilon}+\frac{\left\|\left(F-T_{m+1}\right)^{\varepsilon}\right\|_{\varepsilon}}{\varepsilon^{m+1}},
\end{aligned}
$$

and consequently,

$$
\left\|E_{\varepsilon}(F)\right\|_{\varepsilon}=\left\|\phi_{m+1}-\frac{\left(P_{\varepsilon}-T_{m}\right)^{\varepsilon}}{\varepsilon^{m+1}}\right\|_{\varepsilon}+o(1), \quad \text { as } \quad \varepsilon \rightarrow 0
$$

since $F \in t^{m+1}$. By Theorem 32,

$$
\begin{equation*}
\inf _{P \in B}\left\|\phi_{m+1}-P\right\|_{0}=\lim _{\varepsilon \rightarrow 0}\left\|\phi_{m+1}-\frac{\left(P_{\varepsilon}-T_{m}\right)^{\varepsilon}}{\varepsilon^{m+1}}\right\|_{\varepsilon} . \tag{21}
\end{equation*}
$$

According to (3), there exist constants $\varepsilon_{0}, M>0$ such that

$$
\left\|\phi_{m+1}-\frac{\left(P_{\varepsilon}-T_{m}\right)^{\varepsilon}}{\varepsilon^{m+1}}\right\|_{0} \leq M
$$

for all $0<\varepsilon \leq \varepsilon_{0}$. The equivalence of the norms in Π_{k}^{l} implies that the net $\left\{\frac{\left(P_{\varepsilon}-T_{m}\right)^{\varepsilon}}{\varepsilon^{m+1}}\right\}_{0<\varepsilon \leq \varepsilon_{0}}$ is uniformly bounded on B. So, there exists a subsequence of $\left\{\frac{\left(P_{\varepsilon}-T_{m}\right)^{\varepsilon}}{\varepsilon^{m+1}}\right\}_{0<\varepsilon \leq \varepsilon_{0}}$, which is denoted in the same way, and a polynomial P_{0} such that

$$
\begin{equation*}
\frac{\left(P_{\varepsilon}-T_{m}\right)^{\varepsilon}}{\varepsilon^{m+1}} \text { converge a } P_{0}, \text { uniformly on } B, \text { as } \varepsilon \rightarrow 0 \tag{22}
\end{equation*}
$$

In consequence, $\mathcal{C} \neq \emptyset$.
On the other hand, if $P_{0} \in \mathcal{C}$, there is a sequence $\varepsilon \downarrow 0$ such that $\frac{\left(P_{\varepsilon}-T_{m}\right)^{\varepsilon}}{\varepsilon^{m+1}} \rightarrow$ P_{0}. Since $T_{m} \in \mathcal{A}$, we have $P_{\varepsilon}-T_{m} \in \mathcal{A}$, and so $P_{0} \in \mathcal{B}$ by Corollary 26 . Finally, from Property (3) and (21) we conclude that

$$
\inf _{P \in B}\left\|\phi_{m+1}-P\right\|_{0}=\lim _{\varepsilon \rightarrow 0}\left\|\phi_{m+1}-\frac{\left(P_{\varepsilon}-T_{m}\right)^{\varepsilon}}{\varepsilon^{m+1}}\right\|_{\varepsilon}=\left\|\phi_{m+1}-P_{0}\right\|_{0}
$$

i.e. P_{0} is a solution of (20).

The following theorem is an extension of [11, Theorem 5.1].
Theorem 34 Let \mathcal{A} be a non-zero subspace of Π_{k}^{l} with $l>m$, and let $\left\{P_{\epsilon}\right\}$ be a net of best approximants of F from \mathcal{A} respect to $\|\cdot\|_{\varepsilon}^{*}$. Assume $m+1=$ $\min \left\{j: 0 \leq j \leq l\right.$ and $\left.A_{j}=\{0\}\right\}, F \in t^{m+1}$ with $T_{m} \in \mathcal{A}$ and set $\phi_{m+1}=$ $T_{m+1}-T_{m}$. If the minimization problem (20) has a unique solution P_{0}, then $P_{\varepsilon} \rightarrow T_{m}+P$, where $P \in \mathcal{A}$ is uniquely determined by the condition $T_{m+1}(P)=$ $P_{0}-T_{m}\left(P_{0}\right)$.

Proof Since (20) has a unique solution P_{0}, Theorem 33 implies that

$$
\lim _{\varepsilon \rightarrow 0} \frac{\left(P_{\varepsilon}-T_{m}\right)^{\varepsilon}}{\varepsilon^{m+1}}=P_{0}
$$

In consequence, $\partial^{\alpha}\left(P_{\varepsilon}-T_{m}\right)(0) \rightarrow 0,|\alpha| \leq m$, and $\partial^{\alpha}\left(P_{\varepsilon}-T_{m}\right)(0) \rightarrow \partial^{\alpha} P_{0}(0)$, $|\alpha|=m+1$, as $\varepsilon \rightarrow 0$. Therefore

$$
\begin{equation*}
T_{m+1}\left(P_{\epsilon}-T_{m}\right)(x) \rightarrow \sum_{|\alpha|=m+1} \frac{\partial^{\alpha} P_{0}(0)}{\alpha!} x^{\alpha}=: R(x), x \in B, \text { as } \varepsilon \rightarrow 0 \tag{23}
\end{equation*}
$$

Let $T: \mathcal{A} \rightarrow \Pi_{k}^{m+1}$ be the linear operator defined by $T(P)=T_{m+1}(P)$. As $A_{m+1}=\{0\}$, an analysis similar to that in the proof of Corollary 28 shows that T is an injective operator. Since $T(\mathcal{A})$ is a closed subspace and $\left\{T_{m+1}\left(P_{\epsilon}-T_{m}\right)\right\} \subset T(\mathcal{A}),(23)$ implies that there exists a unique $P \in \mathcal{A}$ such that $T_{m+1}(P)=R$. Hence $T_{m+1}\left(P_{\varepsilon}-T_{m}-P\right) \rightarrow 0$ as $\varepsilon \rightarrow 0$. As $A_{m+1}=\{0\}$ we see that $\|Q\|:=\left\|T_{m+1}(Q)\right\|_{0}$ is a norm on \mathcal{A}, and so $P_{\varepsilon} \rightarrow T_{m}+P$ as $\varepsilon \rightarrow 0$. Finally, by Theorem $25, \mathcal{B} \subset \Pi_{k}^{m+1}$, and consequently $P_{0}-T_{m}\left(P_{0}\right)=$ $T_{m+1}\left(P_{0}\right)-T_{m}\left(P_{0}\right)=R$. The proof is complete.

Remark 35 If \mathcal{A} satisfies the condition (c2), then $\mathcal{A}=\Pi_{k}^{m} \oplus A_{m}$ with $A_{m+1}=\{0\}$. By Corollary 28, $\mathcal{B}=\Pi_{k}^{m} \oplus T_{m+1}\left(A_{m}\right)$ and each element $P \in \mathcal{A}$ is uniquely determined by $T_{m+1}(P)$. So, we can rewrite the problem (20) in the following (equivalent) form:

$$
\begin{equation*}
\min _{Q+U \in \Pi_{k}^{m} \oplus A_{m}}\left\|\phi_{m+1}-\left(Q+T_{m+1}(U)\right)\right\|_{0} . \tag{24}
\end{equation*}
$$

The following result has been proved in [11, Theorem 5.1] and it is a consequence of Theorem 34.

Corollary 36 Let $\Pi_{k}^{m} \subset \mathcal{A} \subset \Pi_{k}^{l}$ be a non-zero subspace that satisfies the condition (c2) and let $\left\{P_{\epsilon}\right\}$ be a net of best approximants of F from \mathcal{A} respect to $\|\cdot\|_{\varepsilon}^{*}$. Assume $F \in t^{m+1}$. If the minimization problem (24) has a unique solution P_{0}, then $P_{\varepsilon} \rightarrow T_{m}+P$, where $P \in \mathcal{A}$ is uniquely determined by the condition $T_{m+1}(P)=P_{0}-T_{m}\left(P_{0}\right)$.

In the following example we present a function $F \in \bigcap_{m=0}^{\infty} t^{m}$ such that $T_{2}(F) \notin \mathcal{A}$ and the net $\left\{T_{i}\left(P_{\varepsilon}\right)\right\}$ does not converge for the same $i>m+1$.

Example 37 Set $B=[-1,1],\|G\|_{\varepsilon}=\left(\int_{-1}^{1}|G(x)|^{2} d x\right)^{\frac{1}{2}}, F(x)=x$, and $\mathcal{A}=\operatorname{span}\left\{1, x^{2}, x^{3}\right\}$. So

$$
\|G\|_{\varepsilon}^{*}=\left(\frac{1}{\varepsilon} \int_{-\varepsilon}^{\varepsilon}|G(x)|^{2} d x\right)^{\frac{1}{2}}
$$

$A_{0}=A_{1}=\operatorname{span}\left\{x^{2}, x^{3}\right\}, A_{2}=\operatorname{span}\left\{x^{3}\right\}$ and $A_{3}=\{0\}$. Since $T_{1}\left(x^{2}\right)=0$, we observe that the subspace \mathcal{A} does not satisfies the condition (c2). Moreover, an straightforward computation shows that

$$
\frac{\left\|F-T_{0}\right\|_{\varepsilon}^{*}}{\varepsilon^{0}}=\frac{\sqrt{6}}{3} \varepsilon \quad \text { and } \quad \frac{\left\|F-T_{s}\right\|_{\varepsilon}^{*}}{\varepsilon^{s}}=0, \quad s \in \mathbb{N}
$$

where $T_{0}(x)=0$ and $T_{s}(x)=x$. In consequence, $F \in t^{m}$ for all $m \in \mathbb{N} \cup\{0\}$, and $T_{2}(F) \notin \mathcal{A}$. Since $\int_{-\varepsilon}^{\varepsilon}\left(x-\frac{7}{5 \varepsilon^{2}} x^{3}\right) x^{i} d x=0, i=0,2,3$, then $P_{\varepsilon}(x)=\frac{7}{5 \varepsilon^{2}} x^{3}$ is the best approximant to F from \mathcal{A} respect to $\|\cdot\|_{\varepsilon}^{*}$. Therefore $T_{i}\left(P_{\varepsilon}\right)(x) \rightarrow 0$, for $i=0,1,2$, but $T_{3}\left(P_{\varepsilon}\right)(x)$ does not converge, as $\varepsilon \rightarrow 0$. So, the best local approximation to F from \mathcal{A} in 0 does not exist, and

$$
\left\|E_{\varepsilon}(F)\right\|_{\varepsilon}=\frac{\left\|F-P_{\varepsilon}\right\|_{\varepsilon}^{*}}{\varepsilon^{3}}=\frac{2 \sqrt{6}}{15 \varepsilon^{2}} \rightarrow \infty, \quad \text { as } \quad \varepsilon \rightarrow 0
$$

We now give another example which shows that the condition $T_{m} \in \mathcal{A}$ is not necessary for the existence of the best local approximation.

Example 38 Set $B,\|\cdot\|_{\varepsilon}^{*}$ and F as in Example 37, and we consider the subspace $\mathcal{A}=\operatorname{span}\left\{1, x^{2}\right\}$. It is clear that $A_{0}=A_{1}=\operatorname{span}\left\{x^{2}\right\}, A_{2}=\{0\}$ and $\mathcal{B}=\mathcal{A}$. Moreover, $F \in t^{2}, T_{1} \notin \mathcal{A}$, and \mathcal{A} does not satisfy the condition (c2) since $T_{1}\left(x^{2}\right)=0$. As $\int_{-\varepsilon}^{\varepsilon}(x-0) x^{i} d x=0, i=0,2$, then $P_{\varepsilon}(x)=0$ is the best approximant to F from \mathcal{A} respect to $\|\cdot\|_{\varepsilon}^{*}$. Therefore, the polynomial 0 is the best local approximation to F from \mathcal{A} in 0 .

References

1. Chui, C.K., Shisha, O., Smith,P.W.: Best Local Approximation. J. Approx. Theory. 15, 371-381 (1975).
2. Chui, C.K., Smith, P.W., Ward, J.D.: Best L_{2} Approximation. J. Approx. Theory. 22, 254-261 (1978).
3. Chui, C.K., Diamond, H., Raphael, L.A.: Best Local Approximation in Several Variables. J. Approx. Theory. 40, 343-350 (1984).
4. Cuenya, H.H., Ferreyra, D.E.: C^{p} Condition and the Best Local Approximation. Anal. Theory Appl. 31, 58-67 (2015).
5. Favier, S.: Convergence of Function Averages in Orlicz Spaces. Numer. Funct. Anal. Optim. 15, 263-278 (1994).
6. Headley, V.B., Kerman, R.A.: Best Local Approximation in $L^{p}(\mu)$. J. Approx. Theory. 62, 277-281 (1990).
7. Macias, R., Zó, F.: Weighted Best Local L^{p} Approximation. J. Approx. Theory. 42, 181-192 (1984).
8. Maehly, H., Witzgall, Ch.: Tschebyschev Approximationen in Kleinen Intervalen I. Approximation durch Polynome. Numer. Math. 2, 142-150 (1960).
9. Walsh, J.L.: On approximation to an analitic function by rational functions of best approximation. Math. Z. 38, 163-176 (1934).
10. Wolfe, J.M.: Interpolation and Best Lp Local Approximation. J. Approx. Theory. 32, 96-102 (1981).
11. Zó, F., Cuenya, H.H.: Best approximations on small regions. A general approach. In: Advanced Courses of Mathematical Analysis II, Proceedings of Second International School, pp. 193-213. World Scientific, Granada (2004).

[^0]: This paper was partially supported by Universidad Nacional de Río Cuarto (grant PPI 18/C472), Universidad Nacional de San Luis (grant PROICO 22F623), and CONICET (grant PIP 112-201501-00433CO).
 F.E. Levis

 Universidad Nacional de Rio Cuarto, CONICET, FCEFQyN, Ruta 36 Km 601, 5800, Rio Cuarto, Argentina.
 Tel.: +54-358-4676234
 Fax: +54-358-4676228
 E-mail: flevis@exa.unrc.edu.ar
 C.V. Ridolfi

 Universidad Nacional de San Luis, CONICET, IMASL, Almirante Brown 907, 5700, San Luis, Argentina

