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Abstract In this paper we study the convergence of a net of subspaces gener-
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1 Introduction

Suppose that {a;} is a data set. This data are values of a function and its
derivatives in a point. If we want to approximate these data using a polyno-
mial of degree at most [, which will be the best algorithm to use? A Taylor
polynomial of degree [ is probably the most natural procedure to use.
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The problem of finding an optimal algorithm to approximate a finite num-
ber of data corresponding to a function is developed in the best local approx-
imation theory.

In 1934, Walsh proved in [9] that the Taylor polynomial of degree [ for an
analytic function f can be obtained by taking the limit as ¢ — 0 of the best
Chebyshev approximation to f from 1! on the disk |z| < e. This paper was
the first association between the best local approximation to a function f from
IT' in 0 and the Taylor polynomial for f at the origin. However, the concept
of best local approximation has been introduced and developed more recently
by Chui, Shisha, and Smith in [1]. Later, several authors [2-8,10] have studied
this problem.

We consider a family of function seminorms {|| - ||c }>0, acting on Lebesgue
measurable functions F': B C R® — R*, where B is the unit ball centered at
the origin in R™. We will use the notation F¢(x) = F(ex) and ||F||Z = || F¢| ..
For [ € NU {0}, we will denote by IT' the class of algebraic polynomials in
n-variables of degree at most [, and IT. the set {P = (p1,...,px) : ps € II'}.

Let A be a subspace of H,i and let {P.}c>0 be a net of best approximants
to F from A respect to | - ||%, i.e.,

|F =Pz <|F-P|z, forall PeA (1)

If the net {P.}.>0 has a limit in A as e — 0, this limit is called the best local
approzimation to F from A in 0. According to (1), we observe that P¢ is a
polynomial in
A*:={P*:Pc A} C II! (2)

of best approximation to F'¢ by elements of the class A%, respect to the semi-
norm || - ||.. We write it briefly by PZ € P4- .(F*). Note that A° is a subspace
generated by horizontal dilations the polynomials in A.

From now on, we assume the following properties for the family of function
seminorms | - ||e, 0 <e < 1.

(1) For F = (f1,...,fx) and G = (¢1,...,9x), we have ||F| < ||G||e, for
every € > 0, whenever |f| <lgs|, s=1,...,k.

(2) If 1 is the function F(x) = (1,...,1), we have ||1||c < oo, for all € > 0.

(3) For every F € Ci(B), we have |F||c = ||Fllo, as € = 0, where Cy(B) is
the set of continuous functions F : B C R® — R¥. Moreover, | - ||o is a
norm on C(B).

An important point to note here is that there exist positive constants
C = C(m,k) and e(m, k) such that for every 0 < e < g(m, k),
1
Sl < 1Pl < OIPlo, for every P e I} 3)

[11, Proposition 3.1]. For examples of nets of seminorms fulfilling conditions
(1)-(3), we refer the reader to [11].
We say that F': B C R® — R* has a Taylor polynomial of degree m at 0,
if there exists P € II}" such that

|IF— P|Z=0(e™), as e—0.
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It is well known that if it exists, it is unique and is denoted by T,,, = T, (F) [11,
Proposition 3.3]. We write F' € t™ if the function F' has the Taylor polynomial
of degree m at 0. Moreover, if I € t™ and T,,,(F) = 3_, <, Caz®, then the
Taylor polynomial of degree I < m for F at 0, is given by T;(F') = Z\a|§l Cozx®
[11, Proposition 3.5]. We set 0%F(0) for the vector a!lC,,.

The problem of best local approximation with a family of function semi-
norms {|| - ||c}e>o satisfying (1)-(3) was considered in [11] for two types of
approximation class A fulfilling IT]* € A C I} and

(cl) A® = A, for each € > 0, or
(c2) if P e Aand T),+1(P) =0, then P =0.

Firstly, the authors studied the asymptotic behavior of a normalized error
function as € — 0 [11, Theorems 4.2 and 4.5]. Secondly, they showed that
there exists the best local approximation to F' in 0 and is associated with a
Taylor polynomial for F in 0 [11, Theorem 5.1]. In particular, if A = II}* and
F € t™, they proved that P. — T,,(F), as ¢ — 0 [11, Theorem 3.1].

In this work we generalize the results found in [11], without the restrictions
(c1) or (c2) given above. For this, it is essential to study the convergence of
the net {A°} as e — 0.

This paper is organized as follows. In Section 2, we investigate the asymp-
totic behavior of {A%}. In Section 3, we study the asymptotic behavior of the
error function e~™~1(F. — P.)¢ for a suitable integer, and we show some re-
sults about the best local approximation in the origin which generalizes those
of [11].

2 Asymptotic behavior of the net {A°}

In this section, we study the asymptotic behavior of the net { A%} given in (2).
We begin with the following definition.

Definition 21 Let A C H,i be a subspace. We say that P € lir% A& if there
E—r
exists a net {P.} C A such that lim |P — P%||o = 0. We denote B = lim A®.
e—0 e—0

Remark 22 If A C H,lC is a subspace, then the sets A° and B are also sub-
spaces of IT.. Furthermore, if A° = A, for all € >0, we have that B = A.

Proposition 23 Let A be a subspace of polynomials such that II]* C A for
some m € NU {0} and k € N. Then II]* C A° for all € > 0. Moreover,
I c B.

Proof Set Re.i(7) = 2%, |a| < m, 1 <i <k, where {e;}¥_, is the canonical
basis of R¥. Then

{Rait o) <m,1<i<k} 4)
is a basis of the space II}". Since A® is a subspace, we have R, ; = ﬁR;i €

A®, and so IT]* C A®, for all € > 0. Finally, using the definition of B, we obtain
o c B.
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From now on, for any Lebesgue measurable function F : B C R” — R* we
denote T_1(F) = 0.

Proposition 24 Let A be a subspace of H,i and let 0 < s+1 <[ be an integer.
If P € A satisfies Ts(P) =0 and Ts1(P) # 0, then Ts41(P) € B.

Proof For each € > 0 we define Q. = 55% € A. Since T, (P) = 0, it follows that
| Tesr (P) — Q2| = 1Bt BI=Pl o o |74 (P) — Q2| = o(1) ase — 0, and
thus Tsy1(P) € B.

The following sets will be needed throughout the paper. Let A be a non-
zero subspace of IT ,lc We define

A=A and A;:={PecA:T;(P)=0} for 0<j<Ll (5)
We note that
A; C A; whenever ¢ < j.
Since A; C {P € II!. : T)(P) = 0} = {0}, we have
{j:0<j<land A; # A} #0 and {j:0<j<land A; ={0}} # 0.

Set
so=min{j:0<j<land 4; # A}

and
ro=min{j:0<j<land A; ={0}}.

It easy to see that 0 < sy < rg <1, and
So,TQE{jZSOSjSTO andAngj_l} =:J. (6)
We can now formulate our main result which describes the limit set 5.

Theorem 25 Let A be a non-zero subspace of H,i. Then B is a subspace of
II,° isomorphic to A. Furthermore, under the above notation it is verified that

(a) if so < ro and J\ {ro} = {so,...,sn} with s; < $;41 for N > 0, then
B =T (Asp )BT sn (Ssn )BTy, (Ssp_y )®- .. BT, (Ss, ), where Ag, @S5, =
Asi—l; 0 S ) S N,’

(b) if so = 1o, then B ="T,,(A).

Proof (a) Assume sy < 1. Since every subspace of Ag,_1, 0 < i < N, has a
complement, there exists a subspace S5, C As,_1 such that

A, @S, =A,,_1, 0<i<N. (7)

In consequence,

A=As, B S5y BSsy_, ... 8B 55 (8)
As S5, CA;,_1,0<i<N,and A4,,_1 = A;, we obtain

Q(x) 2laf>s; 0 e, ifQeSs, 0<i<N.
xr) = =°t o .
Y aisans, —2Wge i Q€ A,

9)
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where syi1 = ro. Let T; : S;, — II}' be a linear operator defined by
T;(P) = Ts,(P), 0 < i < N, and Ty41 : A — IIL""" be the linear opera-
tor given by Tn41(P) = Tsy,, (P). We claim that

(i) T; is an injective operator 0<i<N+1.

(i) Ty (Asy) N 0050 T, (Ss,) = {0}

(iii) If N > 0 then T}, (Sy,) N (T5N+1( o) AN Tsi(Ssi)) — {0} when-
ever | # 1.

Indeed, let 0 < ¢ < N. If T,,(P) = T,(Q) for some P,Q € S,,, then
P—-Q € A;, nS;,. So (7) implies that P = Q. On the other hand, if
Tonir(P) = Tsy,, (Q) with P,Q € A, then P — Q € A, = {0}, which
proves (i). To prove (ii) we consider @n41 € A,y and @; € Ss, such that

P=Ts  (Qns1) = Z?;O Ts,(Q;). From (9) we see that

Tsn 1 (@n41)(2) = Z %xa and ZT ) e 1IN, (10)
lal=sn+1 '

Therefore P = 0. Now, let Qn4+1 € A5, and Q; € S, be such that

= sl(Ql) SN+1 QN+1 Z Tsl l (11)

1=0,i#l

From (9) it follows that

T, (Q) =Y, aagiﬁ(o)xa, 0<i<N.
|a|=s; )

According to (10) and (11) we have P = 0, and (iii) is proved.
Using (i)-(iii), we deduce that the subspace

T5N+1 (ASN) + TSN (SSN) + TSN*I (SSNfl) + st + TSO (SSO)
is a direct sum isomorphic to A. The proof concludes by proving

B T5N+1(A5N)®TSN(SSN) EBCz—"stl(‘Sszfl) 69"'EBCZ"SO(‘S;O)' (12)

We observe that if P € S, \ {0}, then Ty, (P) # 0 and T,,_1(P) = 0 by (7). So,
Proposition 24 implies that Ty, (P) € B. On the other hand, if P € A, \{0}, we
get Ts,, (P) = 0. Moreover, we have T, , (P) # 0. In fact, on the contrary, we

SN+1
see that P € A = {0}. Proposition 24 now gives T, , (P) € B. Therefore,

SN+1
Tonir (Asy) ® Ton (Ssp) ® Tony (Ssn_y) ® - @ Ty (Ss,) C B
On the other hand, if P € B, there exists {P.} C A such that
. _ pefl
tim [P~ P[Jo = 0. (13)
Let dy41 =dim(A;, ) and d; =dim(Ss,), 0 < i < N. We take {vl}dN+1 nd
{wir}fgl basis of A, , and Sy, respectively. It is easy to check that for each
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0<e <1, {e N1y }8 | is a basis of Ay, and {e%w;, }% | is a basis of Si,,
0 <1 < N. According to (8), we have that there exist real numbers. D; ., C; .
such that

dN+1

§ 5_€N+1Dlavl+§ § e %C zr,ewir-

i=0 r=1

From (9) it follows that

v(x) = Z 8avz(0)xa and  wi () = Z Mza.

al a!
la|Zsn 41 || >s;
Consequently,
dN+1
-3 Do) + 33 et @)
i=0 r=1
dN+1 dN+1 a
N S M M
=1 |a|=sN+1 =1 |Oz\>‘5N+1
N & 0w 0%w;, (0)
1595 DD SEHLATIURES ob o SRERIREES T
i=0 r=1|a|=s; =0 r=1|a|>s; @
dN+1
= Dy TsN+1 +Z (Z CzrsTsl Wiy ( ))
=1 =0 \r=1
o 9°v,(0
+ D, 5|“\*$N+lw a
|
=1 |a|>sn+1 &
N d;
0“w
R I
=0 r=1|a|>s
An straightforward computation shows that
do
= CoureTsy (wor) (@)
r=1
Jj—1 d;
Ty, (PS)(z) = Ty, ,(P5)(x) + C,oclol=s P0ir(0) o
s\ sj—1\1e i,7,€ al
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1<j <N, and

(0%

8"‘10”(0)
al

N
T (P)@) =T (P@+ 3> > Cipee™

=0 r=1s;<|a|<sni1
AN+1
3 DT, (0)(@).
=1
Since {Ty,, (v)}i_; is a basis of T, (Asy) and {T;(wi) Y%, is a basis of
T;(Ss,), 0 <i < N, (13) shows that there are real numbers. D; and C;, such
that D; ., — D; and C; . — C; -, as € = 0. In consequence,

a N di
P= Z DiTsy ., (1) + Z <Z Ci, T, (wi,.)> ,
=1 i=0 \r=1
and so P € Tsy . (Asy) ® Toy (Ssy) @ Ton_y (Ssp_y) @ - ® T (Ssp)-
(b) Now assume sg = rq, i.e. A;, = {0}. Then A has the form (8) with N =0,
As, = {0} and S,, = A. An analysis similar to the proof of (a) shows that T},
is an isomorphism and B = T, (Ss,) = Tr, (A).

The following corollary follows immediately from the proof of Theorem 25.

Corollary 26 Let A be a non-zero subspace of II.. Then lim A" = B for
n—oo
any sequence {e,} of the net e | 0.

Remark 27 B is isomorphic to T, (A).

Corollary 28 Let s > m+1 and let A = II]" & As_1 be such that A, = {0}.
Then B = I & T,(As—1) and the linear operator T : A — II7 given by
T(P) = T4(P) define an isomorphism between A and B.

Proof We first claim that T is an injective operator. Indeed, if T(P) = T(Q)
for P,Q € A, then T,(P — Q) = 0 and so P — Q € A;. Since A, = {0}, we
have P = Q.

As A is isomorphic to T'(A), the proof concludes by proving B = II]* &
Ts(As—1) = Ts(A).

Let A; be the sets defined in (5). Since

{0} =A, CAy 1 =...=An CAp1C...C Ay C A,

then A = AS,1 @Bm@Bmfl@@Bo, where Al@Bl :Aifl, 0 S ) § m.
Therefore I} is isomorphic to B,, ®...® By. On the other hand, since sg = 0,
ro=sand J\ {ro} ={0,1,...,m}, by Proposition 25 (a),

B=Ts(As—1) ® Tpn(Bm) ® ... B To(Bo).

From the proof of Theorem 25, we obtain that B,, ®...® By is isomorphic to
T (Bm)®...®To(By), and consequently I} is isomorphic to T5, (By) @ ... &
To(Bo) C II}". Hence, Tr,(By) @ ... @ To(Bo) = II}* and so B = Ts(As—1) ®
I = T5(As-1) @TS(H,T) = TS(A)~
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3 An application to best local approximation

Let {P.} be a net of best approximants to F' from A respect to || - ||%, and let
E. be the error function
Fe — ps
E.(F) = THE
If F et™! then

F— Tm+1

e _ e m+1 pe _
=T, ,1+e""" R, where R, 1= g

m s Balle = o(1),
and Ty, +1 is the Taylor polynomial of F' of degree m + 1 at 0. Moreover,
AP € Pye o (AF¥) and P°+ P € Py ((P+F)?), for Pe A

The following proposition may be proved in much the same way as [11,
Proposition 4.1]. However, we repeat the proof by completeness.

Proposition 31 Let A be a non-zero subspace of H,i with | > m, and let
{P.} be a net of best approximants of F from A respect to || - ||*. If F € t™*1,
Tm € .A and ¢m+1 = T7rz+1 - Tm; then

EE(F) = ¢m+1 + an-&-l - PA5,£(¢m+1 + an-ﬁ-l)v

where | R, 1|le = o(1), as € — 0.

. Fe-T¢
Proof Since Ry, 1 = —51, then
5 5 5 e 5 5
¢ + R - -7 + Fe— T7n+1 o Tm+1 - Tm + Fe— Tm+1
m+1 m+1 — +m+1 m Em-‘rl - €m+1 57n+1
€ 5
_ Fe T,
€m+1

As T,, € A, we have

Fe-1T° Fe-1T°
i1+ By — Pace(bmir + Rypq) = Emi-um — Pac e <E,,L_,_1Tn)

Fe — ps
£ = E.(F).

€m+1

Next, we give a new result about the asymptotic behavior of error without
the conditions (cl) or (¢2), which generalizes Theorems 4.2 and 4.5 given
in [11].

Theorem 32 Let A be a non-zero subspace of H,lc with 1 > m. If F € t™*1,
Tw € A and ¢pir1 = Tiny1 — T, then

|B-(F)le > inf [émss — Plo, a5 0.
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Proof By Proposition 31,

EE(F) = ¢m+1 + an+1 - PA5,€(¢m+1 + an—i—l)? (14)

where [R5, [l = o(1) as e — 0. We first prove
ET < . _ .
T | (Pl < inf (i1 — Pl (15)

In fact, let P € B. By the definition of B, there exists a net {Q.} C A such
that [|[P — QZ|lo — 0, as ¢ — 0. In consequence, |P — Q%||c = o(1), as € — 0,
by (3). Since QZ € A and ||R5, ,||c = o(1), from (14) we obtain

1E=(F)lle < l[¢mir+Ryp1 —Qclle < [@mi1—QCll-+0o(1), as e —0. (16)

By Property (3), ||¢m+1—Plle = ||¢m+1—Pllo, as € — 0. Hence, using Triangle
Inequality we have

lms1 = Q2lle = l[dmt1 = Pllo| < [lldmt1 — Qclle = [|dmr1 — Plle|
+ llm+1 = Plle = l[dms1 = Pllol
<P = Qclle + [l¢m+1 = Plle = Iom+1 = Pllo| = o(1).

as € — 0. Now, according to (16) we get (15).
The proof finishes by observing that

lim | E-(F) - 2 o, 6041 = Pl (17)

Let € | 0 be a sequence such that liH(l] |Ec(F)|le = im, o || Ec(F)]||e. We con-
E—r
sider Pf € Pac c(dms1+R5, 1). We claim that there exist constants M,eq > 0
such that
[P5llo < M, 0<e<eo. (18)

Indeed, as 0 € A° we get

1P Mle <IIPE = (Pmar + By i)lle + [ dmtr + By lle
< 2l pmir + Bl (19)
< 2l pmralle + 2/ Rypa e,

for 0 < € < 1. By Proposition 31 and Property (3), we see that 2||¢n,11]c +
2[|R;, 1 lle = 2||ém1llo, as € — 0. So, from (3) and (19), we obtain (18).

In consequence, there exists a subsequence of {Pf}, which is denoted in the
same way, and Py € H,lC such that PS — P uniformly on B, as ¢ — 0. Since
I¢m+1 = PElle = [|6msr = Pllol < [ ém+1 — PElle = l[dmir = Plle| + [[|dmt1 —
Plle = l[¢m+1 = Pllol < |P = PZllc + ll¢m+1 — Plle = [¢m+1 = Pllo|, using
Property (3) we get

||¢m+1 - P”O = ||¢m+1 - Pe€”€ =+ 0(1), as ¢ — 0.
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We observe that P € B by Corolary 26. Therefore, by Proposition 31,
inf {|¢n+1 = Qllo < [|m+1 = Pllo = l[dm+1 — Fle +o(1)

Qe
<Nl dmt1 + Bypq — Pelle + ([ Roypalle
= |Ec(F)le + ([R5l

So, inf [|gm+1 = Qllo < lim (1Ee(F)le + | BSypalle) = lim, || E=(F)]le, and
(17) is proved.

The following result provides us with a useful and important property for
a net of best approximants to F' from A.

Theorem 33 Let A be a non-zero subspace of H,i with I > m, and let {P.}
be a net of best approzimants of F from A respect to || - ||%. Assume F € t™+1
Tn € A and ¢py1 = Tinp1 — T If C is the cluster point set of the net
{(P;;#}, as € — 0, then C # 0. Moreover, each polynomial in C is a
solution of the minimization problem:

in [|¢ms1 — Pllo. 20
mitt{|¢m1 = Plo (20)

Proof We observe
(F=P)*  (Tnr =Ton)* + (F = Tmy1)® = (P = Tn)°

EE(F) = 6m+1 - €m+1
¢fn+1 - (Pa - Trn)6 + (F — Tm4r1>E
- €m+1 €m+1
=¢ _ (PE — Tm)e (F — Tm+1)5
- ¥m+1 €m+1 €m+1 :
Then
(Ps_Tm>E ||(F_Tm I)EHE
¢m+1 - €m+l - Em—"—j S HEE(F)HE
g
(Ps *Tm)s H(F*Tm+l)6||s
S H(ybm-&-l - Em+1 E+ 5m+1 5

and consequently,

(Pe = Tm)®

g +o(l), as e—0,

€

IE-(F)l. = Hgbmﬂ -

since ' € ™1, By Theorem 32,

. . (PE _Tm)E
Al llomer = Pllo = ;%H%H G

€

According to (3), there exist constants 9, M > 0 such that

(Pe — Tm)e

H¢m+1_ €m+1 SMa

0
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for all 0 < ¢ < gg. The equivalence of the norms in IT ,lc implies that the net

{(Pz;# is uniformly bounded on B. So, there exists a subsequence

}O<s§50
P.—Tm)*
such that

} , which is denoted in the same way, and a polynomial P,
0<e<eo

(Ps — Tm)6

p converge a Py, uniformly on B, as e — 0. (22)
€

In consequence, C # 0.

On the other hand, if Py € C, there is a sequence ¢ | 0 such that (PEE;# —
Py. Since T,, € A, we have P. — T,, € A, and so Py € B by Corollary 26.
Finally, from Property (3) and (21) we conclude that

. . (PE _TM)E
Al 10mer = Pllo = limy H¢m+1 T

= H(bm-i-l - PO”O 5

g

i.e. Py is a solution of (20).
The following theorem is an extension of [11, Theorem 5.1].

Theorem 34 Let A be a non-zero subspace of IT, with | > m, and let {P.}
be a net of best approzimants of F from A respect to || - ||X. Assume m+1 =
min{j:0<j<land A; ={0}}, F € t™"! with T}, € A and set ¢pi1 =
T+1 — T If the minimization problem (20) has a unique solution Py, then
P. — T,,+P, where P € A is uniquely determined by the condition T, +1(P) =
Py — Tm(PO)'

Proof Since (20) has a unique solution Py, Theorem 33 implies that

. (PE - Tm)E _
ling gm+l Po.
In consequence, 9% (P.—T,,)(0) = 0, |a| < m, and 0%(P-—T,,)(0) — 9> Py(0),
|a] = m+ 1, as e — 0. Therefore

T (Pe = To) (@) = > 31;70!(0)95& = R(z), z€ B, ase — 0. (23)

|a]=m+1

Let T : A — II"™' be the linear operator defined by T(P) = Tj,11(P).
As A,,41 = {0}, an analysis similar to that in the proof of Corollary 28
shows that T is an injective operator. Since T'(A) is a closed subspace and
{Tr41(P. —Tn)} C T(A), (23) implies that there exists a unique P € A such
that Tp,+1(P) = R. Hence Ty, 41(P- =T, — P) = 0 as e — 0. As A,,,41 = {0}
we see that [|Q] = ||Tm+1(Q)|lo is & norm on A, and so P. — T,,, + P as
¢ — 0. Finally, by Theorem 25, B C H,Z"'H, and consequently Py — T,,(FPy) =
Tn+1(FPo) — T (Po) = R. The proof is complete.
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Remark 35 If A satisfies the condition (c2), then A = I* & A,, with
A1 = {0}. By Corollary 28, B =II]" &Tp,+1(Awm) and each element P € A
is uniquely determined by T, 4+1(P). So, we can rewrite the problem (20) in
the following (equivalent) form:

Q+Uénﬂll?l@f1m |éms1 — (Q + Trng1(U))llo- (24)

The following result has been proved in [11, Theorem 5.1] and it is a con-
sequence of Theorem 34.

Corollary 36 Let II]" C A C H,lC be a non-zero subspace that satisfies the
condition (c2) and let {P.} be a net of best approzimants of F from A respect
to || - ||z. Assume F € t™F1. If the minimization problem (24) has a unique
solution Py, then P. — T,, + P, where P € A is uniquely determined by the
condition T1(P) = Py — Ty (FPo).-

In the following example we present a function F' € () ~_,t™ such that
T5(F) ¢ A and the net {T;(P-)} does not converge for the same ¢ > m + 1.

1 3
Example 37 Set B = [-1,1], |G|l = <f |G(m)2dac> , F(z) = z, and
-1

A = span{1,2% 23}. So

2

* 1 /
e A

Ag = Ay = span{z? 2®}, Ay = span{x®} and A3 = {0}. Since T1(2?) = 0,
we observe that the subspace A does not satisfies the condition (c2). Moreover,
an straightforward computation shows that

IF-Tol: _v6_ . IF-T

0 = =0, seN,

where To(z) = 0 and Ts(x) = z. In consequence, F € t™ for all m € NU {0},
€

and Ty(F) ¢ A. Since [ (z— s72°) a'de =0,i=0,2,3, then P.(z) = :5a°
—€

is the best approzimant to F' from A respect to || -||%. Therefore T;(P:)(z) — 0,

fori =0,1,2, but T5(P.)(x) does not converge, as e — 0. So, the best local
approximation to F' from A in 0 does not exist, and

_ HF_P€||Z _ 2\/6
_>

1Ee(F)lle = =3 = 1522 , as €—0.

We now give another example which shows that the condition T, € A is
not necessary for the existence of the best local approximation.
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Example 38 Set B, || - ||X and F as in Ezample 37, and we consider the
subspace A = span{l,z%}. It is clear that Ag = A; = span{z?}, Ay = {0}
and B = A. Moreover, F € t>, Ty ¢ A, and A does not satisfy the condition

(c2) since Ty(2?) = 0. As [ (x —0)a'de =0, i = 0,2, then P.(xz) =0 is the
—

best approzimant to F from A respect to || - ||%. Therefore, the polynomial 0 is

the best local approximation to F from A in 0.
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