On convergence of subspaces generated by horizontal dilations of polynomials. An application to best local approximation

F.E. Levis · C.V. Ridolfi

Received: date / Accepted: date

Abstract In this paper we study the convergence of a net of subspaces generated by horizontal dilations of polynomials in a finite dimensional subspace. As a consequence, we extend the results given by Zó and Cuenya [Proceedings of the Second International School. Advanced Courses of Mathematical Analysis II. (2007), 193-213] on a general approach to the problems of best vectorvalued approximation on small regions from a finite dimensional subspace of polynomials.

Keywords Convergence of subspaces \cdot Best local approximation \cdot Abstract norms \cdot Homogeneous dilations.

Mathematics Subject Classification (2010) 40A05 · 41A10 · 41A65

1 Introduction

Suppose that $\{a_j\}$ is a data set. This data are values of a function and its derivatives in a point. If we want to approximate these data using a polynomial of degree at most l, which will be the best algorithm to use? A Taylor polynomial of degree l is probably the most natural procedure to use.

F.E. Levis

Universidad Nacional de Rio Cuarto, CONICET, FCEFQyN, Ruta 36 Km 601, 5800, Rio Cuarto, Argentina. Tel.: +54-358-4676234 Fax: +54-358-4676228

E-mail: flevis@exa.unrc.edu.ar

C.V. Ridolfi

Universidad Nacional de San Luis, CONICET, IMASL, Almirante Brown 907, 5700, San Luis, Argentina

This paper was partially supported by Universidad Nacional de Río Cuarto (grant PPI 18/C472), Universidad Nacional de San Luis (grant PROICO 22F623), and CONICET (grant PIP 112-201501-00433CO).

The problem of finding an optimal algorithm to approximate a finite number of data corresponding to a function is developed in the best local approximation theory.

In 1934, Walsh proved in [9] that the Taylor polynomial of degree l for an analytic function f can be obtained by taking the limit as $\varepsilon \to 0$ of the best Chebyshev approximation to f from Π^l on the disk $|z| \leq \varepsilon$. This paper was the first association between the best local approximation to a function f from Π^l in 0 and the Taylor polynomial for f at the origin. However, the concept of best local approximation has been introduced and developed more recently by Chui, Shisha, and Smith in [1]. Later, several authors [2–8,10] have studied this problem.

We consider a family of function seminorms $\{ \| \cdot \|_{\varepsilon} \}_{\varepsilon > 0}$, acting on Lebesgue measurable functions $F : B \subset \mathbb{R}^n \to \mathbb{R}^k$, where B is the unit ball centered at the origin in \mathbb{R}^n . We will use the notation $F^{\varepsilon}(x) = F(\varepsilon x)$ and $\|F\|_{\varepsilon}^* = \|F^{\varepsilon}\|_{\varepsilon}$. For $l \in \mathbb{N} \cup \{0\}$, we will denote by Π^l the class of algebraic polynomials in *n*-variables of degree at most l, and Π_k^l the set $\{P = (p_1, \ldots, p_k) : p_s \in \Pi^l\}$.

Let \mathcal{A} be a subspace of Π_k^l and let $\{P_\epsilon\}_{\epsilon>0}$ be a net of best approximants to F from \mathcal{A} respect to $\|\cdot\|_{\epsilon}^*$, i.e.,

$$\|F - P_{\varepsilon}\|_{\varepsilon}^* \le \|F - P\|_{\varepsilon}^*, \quad \text{for all} \quad P \in \mathcal{A}.$$
(1)

If the net $\{P_{\epsilon}\}_{\epsilon>0}$ has a limit in \mathcal{A} as $\epsilon \to 0$, this limit is called the *best local* approximation to F from \mathcal{A} in 0. According to (1), we observe that $P_{\varepsilon}^{\varepsilon}$ is a polynomial in

$$\mathcal{A}^{\varepsilon} := \{ P^{\varepsilon} : P \in \mathcal{A} \} \subset \Pi_k^l \tag{2}$$

of best approximation to F^{ε} by elements of the class $\mathcal{A}^{\varepsilon}$, respect to the seminorm $\|\cdot\|_{\varepsilon}$. We write it briefly by $P_{\varepsilon}^{\varepsilon} \in \mathcal{P}_{\mathcal{A}^{\varepsilon},\varepsilon}(F^{\varepsilon})$. Note that $\mathcal{A}^{\varepsilon}$ is a subspace generated by horizontal dilations the polynomials in \mathcal{A} .

From now on, we assume the following properties for the family of function seminorms $\|\cdot\|_{\varepsilon}$, $0 \le \varepsilon \le 1$.

- (1) For $F = (f_1, \ldots, f_k)$ and $G = (g_1, \ldots, g_k)$, we have $||F||_{\varepsilon} \leq ||G||_{\varepsilon}$, for every $\varepsilon > 0$, whenever $|f_s| \leq |g_s|, s = 1, \ldots, k$.
- (2) If 1 is the function F(x) = (1, ..., 1), we have $||1||_{\varepsilon} < \infty$, for all $\varepsilon > 0$.
- (3) For every $F \in C_k(B)$, we have $||F||_{\varepsilon} \to ||F||_0$, as $\varepsilon \to 0$, where $C_k(B)$ is the set of continuous functions $F : B \subset \mathbb{R}^n \to \mathbb{R}^k$. Moreover, $||\cdot||_0$ is a norm on $C_k(B)$.

An important point to note here is that there exist positive constants C = C(m, k) and $\varepsilon(m, k)$ such that for every $0 < \varepsilon \leq \varepsilon(m, k)$,

$$\frac{1}{C} \|P\|_0 \le \|P\|_{\varepsilon} \le C \|P\|_0, \quad \text{for every} \quad P \in \Pi_k^m.$$
(3)

[11, Proposition 3.1]. For examples of nets of seminorms fulfilling conditions (1)-(3), we refer the reader to [11].

We say that $F: B \subset \mathbb{R}^n \to \mathbb{R}^k$ has a Taylor polynomial of degree m at 0, if there exists $P \in \Pi_k^m$ such that

$$||F - P||_{\varepsilon}^* = o(\varepsilon^m), \text{ as } \varepsilon \to 0.$$

It is well known that if it exists, it is unique and is denoted by $T_m = T_m(F)$ [11, Proposition 3.3]. We write $F \in t^m$ if the function F has the Taylor polynomial of degree m at 0. Moreover, if $F \in t^m$ and $T_m(F) = \sum_{|\alpha| \le m} C_{\alpha} x^{\alpha}$, then the Taylor polynomial of degree $l \le m$ for F at 0, is given by $T_l(F) = \sum_{|\alpha| \le l} C_{\alpha} x^{\alpha}$ [11, Proposition 3.5]. We set $\partial^{\alpha} F(0)$ for the vector $\alpha! C_{\alpha}$.

The problem of best local approximation with a family of function seminorms $\{\|\cdot\|_{\varepsilon}\}_{\varepsilon>0}$ satisfying (1)-(3) was considered in [11] for two types of approximation class \mathcal{A} fulfilling $\Pi_k^m \subset \mathcal{A} \subset \Pi_k^l$ and

(c1) $\mathcal{A}^{\varepsilon} = \mathcal{A}$, for each $\varepsilon > 0$, or

(c2) if $P \in \mathcal{A}$ and $T_{m+1}(P) = 0$, then P = 0.

Firstly, the authors studied the asymptotic behavior of a normalized error function as $\varepsilon \to 0$ [11, Theorems 4.2 and 4.5]. Secondly, they showed that there exists the best local approximation to F in 0 and is associated with a Taylor polynomial for F in 0 [11, Theorem 5.1]. In particular, if $\mathcal{A} = \Pi_k^m$ and $F \in t^m$, they proved that $P_{\varepsilon} \to T_m(F)$, as $\varepsilon \to 0$ [11, Theorem 3.1].

In this work we generalize the results found in [11], without the restrictions (c1) or (c2) given above. For this, it is essential to study the convergence of the net $\{\mathcal{A}^{\varepsilon}\}$ as $\varepsilon \to 0$.

This paper is organized as follows. In Section 2, we investigate the asymptotic behavior of $\{\mathcal{A}^{\varepsilon}\}$. In Section 3, we study the asymptotic behavior of the error function $\varepsilon^{-m-1}(F_{\varepsilon} - P_{\varepsilon})^{\varepsilon}$ for a suitable integer, and we show some results about the best local approximation in the origin which generalizes those of [11].

2 Asymptotic behavior of the net $\{\mathcal{A}^{\varepsilon}\}$

In this section, we study the asymptotic behavior of the net $\{\mathcal{A}^{\varepsilon}\}$ given in (2). We begin with the following definition.

Definition 21 Let $\mathcal{A} \subset \Pi_k^l$ be a subspace. We say that $P \in \lim_{\varepsilon \to 0} \mathcal{A}^{\varepsilon}$ if there exists a net $\{P_{\epsilon}\} \subset \mathcal{A}$ such that $\lim_{\varepsilon \to 0} \|P - P_{\epsilon}^{\varepsilon}\|_0 = 0$. We denote $\mathcal{B} = \lim_{\varepsilon \to 0} \mathcal{A}^{\varepsilon}$.

Remark 22 If $\mathcal{A} \subset \Pi_k^l$ is a subspace, then the sets $\mathcal{A}^{\varepsilon}$ and \mathcal{B} are also subspaces of Π_k^l . Furthermore, if $\mathcal{A}^{\varepsilon} = \mathcal{A}$, for all $\varepsilon > 0$, we have that $\mathcal{B} = \mathcal{A}$.

Proposition 23 Let \mathcal{A} be a subspace of polynomials such that $\Pi_k^m \subset \mathcal{A}$ for some $m \in \mathbb{N} \cup \{0\}$ and $k \in \mathbb{N}$. Then $\Pi_k^m \subset \mathcal{A}^{\varepsilon}$ for all $\varepsilon > 0$. Moreover, $\Pi_k^m \subset \mathcal{B}$.

Proof Set $R_{\alpha,i}(x) = x^{\alpha}e_i$, $|\alpha| \leq m, 1 \leq i \leq k$, where $\{e_i\}_{i=1}^k$ is the canonical basis of \mathbb{R}^k . Then

$$\{R_{\alpha,i} : |\alpha| \le m, 1 \le i \le k\}$$

$$\tag{4}$$

is a basis of the space Π_k^m . Since $\mathcal{A}^{\varepsilon}$ is a subspace, we have $R_{\alpha,i} = \frac{1}{\varepsilon^{|\alpha|}} R_{\alpha,i}^{\varepsilon} \in \mathcal{A}^{\varepsilon}$, and so $\Pi_k^m \subset \mathcal{A}^{\varepsilon}$, for all $\varepsilon > 0$. Finally, using the definition of \mathcal{B} , we obtain $\Pi_k^m \subset \mathcal{B}$.

From now on, for any Lebesgue measurable function $F: B \subset \mathbb{R}^n \to \mathbb{R}^k$ we denote $T_{-1}(F) = 0$.

Proposition 24 Let \mathcal{A} be a subspace of Π_k^l and let $0 \leq s+1 \leq l$ be an integer. If $P \in \mathcal{A}$ satisfies $T_s(P) = 0$ and $T_{s+1}(P) \neq 0$, then $T_{s+1}(P) \in \mathcal{B}$.

 $\begin{array}{l} Proof \mbox{ For each } \varepsilon > 0 \mbox{ we define } Q_{\varepsilon} = \frac{P}{\varepsilon^{s+1}} \in \mathcal{A}. \mbox{ Since } T_s(P) = 0, \mbox{ it follows that } \\ \|T_{s+1}(P) - Q_{\varepsilon}^{\varepsilon}\|_0 = \frac{\|(T_{s+1}(P) - P)^{\varepsilon}\|_0}{\varepsilon^{s+1}}. \mbox{ So } \|T_{s+1}(P) - Q_{\varepsilon}^{\varepsilon}\|_0 = o(1) \mbox{ as } \varepsilon \to 0, \mbox{ and thus } T_{s+1}(P) \in \mathcal{B}. \end{array}$

The following sets will be needed throughout the paper. Let \mathcal{A} be a non-zero subspace of Π_k^l . We define

$$A_{-1} := \mathcal{A} \quad \text{and} \quad A_j := \{P \in \mathcal{A} : T_j(P) = 0\} \quad \text{for} \quad 0 \le j \le l.$$
(5)

We note that

$$A_j \subset A_i$$
 whenever $i < j$.

Since $A_l \subset \{P \in \Pi_k^l : T_l(P) = 0\} = \{0\}$, we have

 $\{j: 0 \le j \le l \text{ and } A_j \ne \mathcal{A}\} \ne \emptyset \text{ and } \{j: 0 \le j \le l \text{ and } A_j = \{0\}\} \ne \emptyset.$

 Set

$$s_0 = \min\{j : 0 \le j \le l \text{ and } A_j \ne A\}$$

and

$$r_0 = \min\{j : 0 \le j \le l \text{ and } A_j = \{0\}\}.$$

It easy to see that $0 \leq s_0 \leq r_0 \leq l$, and

$$s_0, r_0 \in \{j : s_0 \le j \le r_0 \text{ and } A_j \subsetneq A_{j-1}\} =: J.$$
 (6)

We can now formulate our main result which describes the limit set \mathcal{B} .

Theorem 25 Let \mathcal{A} be a non-zero subspace of Π_k^l . Then \mathcal{B} is a subspace of $\Pi_k^{r_0}$ isomorphic to \mathcal{A} . Furthermore, under the above notation it is verified that

(a) if $s_0 < r_0$ and $J \setminus \{r_0\} = \{s_0, \dots, s_N\}$ with $s_i < s_{i+1}$ for N > 0, then $\mathcal{B} = T_{r_0}(A_{s_N}) \oplus T_{s_N}(S_{s_N}) \oplus T_{s_{N-1}}(S_{s_{N-1}}) \oplus \dots \oplus T_{s_0}(S_{s_0})$, where $A_{s_i} \oplus S_{s_i} = A_{s_i-1}, \ 0 \le i \le N$; (b) if $s_0 = r_0$, then $\mathcal{B} = T_{r_0}(\mathcal{A})$.

Proof (a) Assume $s_0 < r_0$. Since every subspace of A_{s_i-1} , $0 \le i \le N$, has a complement, there exists a subspace $S_{s_i} \subset A_{s_i-1}$ such that

$$A_{s_i} \oplus S_{s_i} = A_{s_i-1}, \quad 0 \le i \le N.$$

$$\tag{7}$$

In consequence,

$$\mathcal{A} = A_{s_N} \oplus S_{s_N} \oplus S_{s_{N-1}} \oplus \ldots \oplus S_{s_0}.$$
(8)

As $S_{s_i} \subset A_{s_i-1}$, $0 \leq i \leq N$, and $A_{r_0-1} = A_{s_N}$ we obtain

$$Q(x) = \begin{cases} \sum_{|\alpha| \ge s_i} \frac{\partial^{\alpha} Q(0)}{\alpha!} x^{\alpha}, & \text{if } Q \in S_{s_i}, \quad 0 \le i \le N. \\ \sum_{|\alpha| \ge s_{N+1}} \frac{\partial^{\alpha} Q(0)}{\alpha!} x^{\alpha}, & \text{if } Q \in A_{s_N}. \end{cases}$$
(9)

where $s_{N+1} = r_0$. Let $T_i : S_{s_i} \to \Pi_k^{s_i}$ be a linear operator defined by $T_i(P) = T_{s_i}(P), 0 \le i \le N$, and $T_{N+1} : \mathcal{A} \to \Pi_k^{s_{N+1}}$ be the linear operator given by $T_{N+1}(P) = T_{s_{N+1}}(P)$. We claim that

(i) T_i is an injective operator, $0 \le i \le N+1$.

(ii) $T_{s_{N+1}}(A_{s_N}) \cap \sum_{i=0}^{N} T_{s_i}(S_{s_i}) = \{0\}.$

(iii) If N > 0 then $T_{s_l}(S_{s_l}) \cap \left(T_{s_{N+1}}(A_{s_N}) + \sum_{i=0, i \neq l}^N T_{s_i}(S_{s_i})\right) = \{0\}$ whenever $l \neq i$.

Indeed, let $0 \leq i \leq N$. If $T_{s_i}(P) = T_{s_i}(Q)$ for some $P, Q \in S_{s_i}$, then $P - Q \in A_{s_i} \cap S_{s_i}$. So (7) implies that P = Q. On the other hand, if $T_{s_{N+1}}(P) = T_{s_{N+1}}(Q)$ with $P, Q \in \mathcal{A}$, then $P - Q \in A_{s_{N+1}} = \{0\}$, which proves (i). To prove (ii) we consider $Q_{N+1} \in A_{s_N}$ and $Q_i \in S_{s_i}$ such that $P = T_{s_{N+1}}(Q_{N+1}) = \sum_{i=0}^{N} T_{s_i}(Q_i)$. From (9) we see that

$$T_{s_{N+1}}(Q_{N+1})(x) = \sum_{|\alpha|=s_{N+1}} \frac{\partial^{\alpha} Q_N(0)}{\alpha!} x^{\alpha} \quad \text{and} \quad \sum_{i=0}^N T_{s_i}(Q_i) \in \Pi_k^{s_N}.$$
(10)

Therefore P = 0. Now, let $Q_{N+1} \in A_{s_N}$ and $Q_i \in S_{s_i}$ be such that

$$P = T_{s_l}(Q_l) = T_{s_{N+1}}(Q_{N+1}) + \sum_{i=0, i \neq l}^N T_{s_i}(Q_i).$$
(11)

From (9) it follows that

$$T_{s_i}(Q_i) = \sum_{|\alpha|=s_i} \frac{\partial^{\alpha} Q_i(0)}{\alpha!} x^{\alpha}, \quad 0 \le i \le N.$$

According to (10) and (11) we have P = 0, and (iii) is proved. Using (i)-(iii), we deduce that the subspace

$$T_{s_{N+1}}(A_{s_N}) + T_{s_N}(S_{s_N}) + T_{s_{N-1}}(S_{s_{N-1}}) + \ldots + T_{s_0}(S_{s_0})$$

is a direct sum isomorphic to \mathcal{A} . The proof concludes by proving

$$\mathcal{B} = T_{s_{N+1}}(A_{s_N}) \oplus T_{s_N}(S_{s_N}) \oplus T_{s_{N-1}}(S_{s_{N-1}}) \oplus \dots \oplus T_{s_0}(S_{s_0}).$$
(12)

We observe that if $P \in S_{s_i} \setminus \{0\}$, then $T_{s_i}(P) \neq 0$ and $T_{s_i-1}(P) = 0$ by (7). So, Proposition 24 implies that $T_{s_i}(P) \in \mathcal{B}$. On the other hand, if $P \in A_{s_N} \setminus \{0\}$, we get $T_{s_N}(P) = 0$. Moreover, we have $T_{s_{N+1}}(P) \neq 0$. In fact, on the contrary, we see that $P \in A_{s_{N+1}} = \{0\}$. Proposition 24 now gives $T_{s_{N+1}}(P) \in \mathcal{B}$. Therefore,

$$T_{s_{N+1}}(A_{s_N}) \oplus T_{s_N}(S_{s_N}) \oplus T_{s_{N-1}}(S_{s_{N-1}}) \oplus \ldots \oplus T_{s_0}(S_{s_0}) \subset \mathcal{B}.$$

On the other hand, if $P \in \mathcal{B}$, there exists $\{P_{\epsilon}\} \subset \mathcal{A}$ such that

$$\lim_{\varepsilon \to 0} ||P - P_{\epsilon}^{\varepsilon}||_{0} = 0.$$
(13)

Let $d_{N+1} = \dim(A_{s_N})$ and $d_i = \dim(S_{s_i})$, $0 \le i \le N$. We take $\{v_l\}_{l=1}^{d_{N+1}}$ and $\{w_{ir}\}_{r=1}^{d_i}$ basis of A_{s_N} , and S_{s_i} respectively. It is easy to check that for each

 $0 < \varepsilon \leq 1, \ \{\varepsilon^{-s_{N+1}}v_l\}_{l=1}^a$ is a basis of A_{s_N} and $\{\varepsilon^{-s_i}w_{ir}\}_{r=1}^{d_i}$ is a basis of S_{s_i} , $0 \leq i \leq N$. According to (8), we have that there exist real numbers. $D_{l,\varepsilon}, C_{i,r,\varepsilon}$ such that

$$P_{\varepsilon} = \sum_{l=1}^{d_{N+1}} \varepsilon^{-s_{N+1}} D_{l,\varepsilon} v_l + \sum_{i=0}^{N} \sum_{r=1}^{d_i} \varepsilon^{-s_i} C_{i,r,\varepsilon} w_{ir}.$$

From (9) it follows that

$$v_l(x) = \sum_{|\alpha| \ge s_{N+1}} \frac{\partial^{\alpha} v_l(0)}{\alpha!} x^{\alpha} \quad \text{and} \quad w_{ir}(x) = \sum_{|\alpha| \ge s_i} \frac{\partial^{\alpha} w_{ir}(0)}{\alpha!} x^{\alpha}.$$

Consequently,

$$\begin{split} P_{\varepsilon}^{\varepsilon}(x) &= \sum_{l=1}^{d_{N+1}} D_{l,\varepsilon} \varepsilon^{-s_{N+1}} v_{l}^{\varepsilon}(x) + \sum_{i=0}^{N} \sum_{r=1}^{d_{i}} C_{i,r,\varepsilon} \varepsilon^{-s_{i}} w_{ir}^{\varepsilon}(x) \\ &= \sum_{l=1}^{d_{N+1}} \sum_{|\alpha|=s_{N+1}} D_{l,\varepsilon} \frac{\partial^{\alpha} v_{l}(0)}{\alpha!} x^{\alpha} + \sum_{l=1}^{d_{N+1}} \sum_{|\alpha|>s_{N+1}} D_{l,\varepsilon} \varepsilon^{|\alpha|-s_{N+1}} \frac{\partial^{\alpha} v_{l}(0)}{\alpha!} x^{\alpha} \\ &+ \sum_{i=0}^{N} \sum_{r=1}^{d_{i}} \sum_{|\alpha|=s_{i}} C_{i,r,\varepsilon} \frac{\partial^{\alpha} w_{ir}(0)}{\alpha!} x^{\alpha} + \sum_{i=0}^{N} \sum_{r=1}^{d_{i}} \sum_{|\alpha|>s_{i}} C_{i,r,\varepsilon} \varepsilon^{|\alpha|-s_{i}} \frac{\partial^{\alpha} w_{ir}(0)}{\alpha!} x^{\alpha} \\ &= \sum_{l=1}^{d_{N+1}} D_{l,\varepsilon} T_{s_{N+1}}(v_{l})(x) + \sum_{i=0}^{N} \left(\sum_{r=1}^{d_{i}} C_{i,r,\varepsilon} T_{s_{i}}(w_{ir})(x) \right) \\ &+ \sum_{i=0}^{d_{N+1}} \sum_{|\alpha|>s_{N+1}} D_{l,\varepsilon} \varepsilon^{|\alpha|-s_{N+1}} \frac{\partial^{\alpha} v_{l}(0)}{\alpha!} x^{\alpha} \\ &+ \sum_{i=0}^{N} \sum_{r=1}^{d_{i}} \sum_{|\alpha|>s_{i}} C_{i,r,\varepsilon} \varepsilon^{|\alpha|-s_{i}} \frac{\partial^{\alpha} w_{ir}(0)}{\alpha!} x^{\alpha}. \end{split}$$

An straightforward computation shows that

$$\begin{split} T_{s_0}(P_{\varepsilon}^{\varepsilon})(x) &= \sum_{r=1}^{d_0} C_{0,r,\varepsilon} T_{s_0}(w_{0r})(x) \\ T_{s_j}(P_{\varepsilon}^{\varepsilon})(x) &= T_{s_{j-1}}(P_{\varepsilon}^{\varepsilon})(x) + \sum_{i=0}^{j-1} \sum_{r=1}^{d_i} \sum_{s_i < |\alpha| \le s_j} C_{i,r,\varepsilon} \varepsilon^{|\alpha| - s_i} \frac{\partial^{\alpha} w_{ir}(0)}{\alpha!} x^{\alpha} \\ &+ \sum_{r=1}^{d_j} C_{j,r,\varepsilon} T_{s_j}(w_{jr})(x), \end{split}$$

 $1 \leq j \leq N$, and

$$T_{s_{N+1}}(P_{\varepsilon}^{\varepsilon})(x) = T_{s_{N}}(P_{\varepsilon}^{\varepsilon})(x) + \sum_{i=0}^{N} \sum_{r=1}^{d_{i}} \sum_{s_{i} < |\alpha| \le s_{N+1}} C_{i,r,\varepsilon} \varepsilon^{|\alpha| - s_{i}} \frac{\partial^{\alpha} w_{ir}(0)}{\alpha!} x^{\alpha} + \sum_{l=1}^{d_{N+1}} D_{l,\varepsilon} T_{s_{N+1}}(v_{l})(x).$$

Since $\{T_{s_{N+1}}(v_l)\}_{l=1}^a$ is a basis of $T_{s_{N+1}}(A_{s_N})$ and $\{T_i(w_{ir})\}_{r=1}^{d_i}$ is a basis of $T_i(S_{s_i}), 0 \leq i \leq N, (13)$ shows that there are real numbers. D_l and $C_{i,r}$ such that $D_{l,\varepsilon} \to D_l$ and $C_{i,r,\varepsilon} \to C_{i,r}$, as $\varepsilon \to 0$. In consequence,

$$P = \sum_{l=1}^{a} D_l T_{s_{N+1}}(v_l) + \sum_{i=0}^{N} \left(\sum_{r=1}^{d_i} C_{i,r} T_{s_i}(w_{ir}) \right),$$

and so $P \in T_{s_{N+1}}(A_{s_N}) \oplus T_{s_N}(S_{s_N}) \oplus T_{s_{N-1}}(S_{s_{N-1}}) \oplus \ldots \oplus T_{s_0}(S_{s_0}).$ (b) Now assume $s_0 = r_0$, i.e. $A_{s_0} = \{0\}$. Then \mathcal{A} has the form (8) with N = 0, $A_{s_0} = \{0\}$ and $S_{s_0} = \mathcal{A}$. An analysis similar to the proof of (a) shows that T_{r_0} is an isomorphism and $\mathcal{B} = T_{s_0}(S_{s_0}) = T_{r_0}(\mathcal{A}).$

The following corollary follows immediately from the proof of Theorem 25.

Corollary 26 Let \mathcal{A} be a non-zero subspace of Π_k^l . Then $\lim_{n \to \infty} \mathcal{A}^{\varepsilon_n} = \mathcal{B}$ for any sequence $\{\varepsilon_n\}$ of the net $\epsilon \downarrow 0$.

Remark 27 \mathcal{B} is isomorphic to $T_{r_0}(\mathcal{A})$.

Corollary 28 Let $s \ge m+1$ and let $\mathcal{A} = \Pi_k^m \oplus A_{s-1}$ be such that $A_s = \{0\}$. Then $\mathcal{B} = \Pi_k^m \oplus T_s(A_{s-1})$ and the linear operator $T : \mathcal{A} \to \Pi_k^s$ given by $T(P) = T_s(P)$ define an isomorphism between \mathcal{A} and \mathcal{B} .

Proof We first claim that T is an injective operator. Indeed, if T(P) = T(Q) for $P, Q \in \mathcal{A}$, then $T_s(P - Q) = 0$ and so $P - Q \in A_s$. Since $A_s = \{0\}$, we have P = Q.

As \mathcal{A} is isomorphic to $T(\mathcal{A})$, the proof concludes by proving $\mathcal{B} = \Pi_k^m \oplus T_s(A_{s-1}) = T_s(\mathcal{A}).$

Let A_i be the sets defined in (5). Since

$$\{0\} = A_s \subsetneq A_{s-1} = \ldots = A_m \subsetneq A_{m-1} \subsetneq \ldots \subsetneq A_0 \subsetneq \mathcal{A},$$

then $\mathcal{A} = A_{s-1} \oplus B_m \oplus B_{m-1} \oplus \ldots \oplus B_0$, where $A_i \oplus B_i = A_{i-1}, 0 \leq i \leq m$. Therefore Π_k^m is isomorphic to $B_m \oplus \ldots \oplus B_0$. On the other hand, since $s_0 = 0$, $r_0 = s$ and $J \setminus \{r_0\} = \{0, 1, \ldots, m\}$, by Proposition 25 (a),

$$\mathcal{B} = T_s(A_{s-1}) \oplus T_m(B_m) \oplus \ldots \oplus T_0(B_0).$$

From the proof of Theorem 25, we obtain that $B_m \oplus \ldots \oplus B_0$ is isomorphic to $T_m(B_m) \oplus \ldots \oplus T_0(B_0)$, and consequently Π_k^m is isomorphic to $T_m(B_m) \oplus \ldots \oplus T_0(B_0) \subset \Pi_k^m$. Hence, $T_m(B_m) \oplus \ldots \oplus T_0(B_0) = \Pi_k^m$ and so $\mathcal{B} = T_s(A_{s-1}) \oplus \Pi_k^m = T_s(A_{s-1}) \oplus T_s(\Pi_k^m) = T_s(\mathcal{A})$.

3 An application to best local approximation

Let $\{P_{\epsilon}\}$ be a net of best approximants to F from \mathcal{A} respect to $\|\cdot\|_{\varepsilon}^{*}$, and let E_{ε} be the error function

$$E_{\varepsilon}(F) = rac{F^{\varepsilon} - P_{\varepsilon}^{\varepsilon}}{\varepsilon^{m+1}}.$$

If $F \in t^{m+1}$, then

$$F^{\varepsilon} = T_{m+1}^{\varepsilon} + \varepsilon^{m+1} R_{m+1}^{\varepsilon} \quad \text{where} \quad R_{m+1} = \frac{F - T_{m+1}}{\varepsilon^{m+1}}, \quad ||R_{m+1}^{\varepsilon}||_{\varepsilon} = o(1),$$

and T_{m+1} is the Taylor polynomial of F of degree m+1 at 0. Moreover,

$$\lambda P_{\varepsilon}^{\varepsilon} \in \mathcal{P}_{\mathcal{A}^{\varepsilon},\varepsilon}(\lambda F^{\varepsilon}) \quad \text{and} \quad P^{\varepsilon} + P_{\varepsilon}^{\varepsilon} \in \mathcal{P}_{\mathcal{A}^{\varepsilon},\varepsilon}((P+F)^{\varepsilon}), \quad \text{for} \quad P \in \mathcal{A}.$$

The following proposition may be proved in much the same way as [11, Proposition 4.1]. However, we repeat the proof by completeness.

Proposition 31 Let \mathcal{A} be a non-zero subspace of Π_k^l with l > m, and let $\{P_{\epsilon}\}$ be a net of best approximants of F from \mathcal{A} respect to $\|\cdot\|_{\epsilon}^*$. If $F \in t^{m+1}$, $T_m \in \mathcal{A}$ and $\phi_{m+1} = T_{m+1} - T_m$, then

$$E_{\varepsilon}(F) = \phi_{m+1} + R_{m+1}^{\varepsilon} - \mathcal{P}_{\mathcal{A}^{\varepsilon},\varepsilon}(\phi_{m+1} + R_{m+1}^{\varepsilon}),$$

where $\|R_{m+1}^{\varepsilon}\|_{\varepsilon} = o(1)$, as $\varepsilon \to 0$.

Proof Since $R_{m+1}^{\varepsilon} = \frac{F^{\varepsilon} - T_{m+1}^{\varepsilon}}{\varepsilon^{m+1}}$, then

$$\phi_{m+1} + R_{m+1}^{\varepsilon} = T_{m+1} - T_m + \frac{F^{\varepsilon} - T_{m+1}^{\varepsilon}}{\varepsilon^{m+1}} = \frac{T_{m+1}^{\varepsilon} - T_m^{\varepsilon}}{\varepsilon^{m+1}} + \frac{F^{\varepsilon} - T_{m+1}^{\varepsilon}}{\varepsilon^{m+1}}$$
$$= \frac{F^{\varepsilon} - T_m^{\varepsilon}}{\varepsilon^{m+1}}.$$

As $T_m \in \mathcal{A}$, we have

$$\phi_{m+1} + R_{m+1}^{\varepsilon} - \mathcal{P}_{\mathcal{A}^{\varepsilon},\varepsilon}(\phi_{m+1} + R_{m+1}^{\varepsilon}) = \frac{F^{\varepsilon} - T_{m}^{\varepsilon}}{\varepsilon^{m+1}} - P_{\mathcal{A}^{\varepsilon},\varepsilon}\left(\frac{F^{\varepsilon} - T_{m}^{\varepsilon}}{\varepsilon^{m+1}}\right)$$
$$= \frac{F^{\varepsilon} - P_{\varepsilon}^{\varepsilon}}{\varepsilon^{m+1}} = E_{\varepsilon}(F).$$

Next, we give a new result about the asymptotic behavior of error without the conditions (c1) or (c2), which generalizes Theorems 4.2 and 4.5 given in [11].

Theorem 32 Let \mathcal{A} be a non-zero subspace of Π_k^l with l > m. If $F \in t^{m+1}$, $T_m \in \mathcal{A}$ and $\phi_{m+1} = T_{m+1} - T_m$, then

$$||E_{\varepsilon}(F)||_{\varepsilon} \to \inf_{P \in \mathcal{B}} ||\phi_{m+1} - P||_0, \quad as \quad \varepsilon \to 0.$$

Proof By Proposition 31,

$$E_{\varepsilon}(F) = \phi_{m+1} + R^{\varepsilon}_{m+1} - \mathcal{P}_{\mathcal{A}^{\varepsilon},\varepsilon}(\phi_{m+1} + R^{\varepsilon}_{m+1}), \qquad (14)$$

where $||R_{m+1}^{\varepsilon}||_{\varepsilon} = o(1)$ as $\varepsilon \to 0$. We first prove

$$\overline{\lim_{\varepsilon \to 0}} ||E_{\varepsilon}(F)||_{\varepsilon} \le \inf_{P \in B} ||\phi_{m+1} - P||_0.$$
(15)

In fact, let $P \in \mathcal{B}$. By the definition of \mathcal{B} , there exists a net $\{Q_{\varepsilon}\} \subset \mathcal{A}$ such that $\|P - Q_{\varepsilon}^{\varepsilon}\|_{0} \to 0$, as $\varepsilon \to 0$. In consequence, $\|P - Q_{\varepsilon}^{\varepsilon}\|_{\varepsilon} = o(1)$, as $\varepsilon \to 0$, by (3). Since $Q_{\varepsilon}^{\varepsilon} \in \mathcal{A}^{\varepsilon}$ and $\|R_{m+1}^{\varepsilon}\|_{\varepsilon} = o(1)$, from (14) we obtain

$$||E_{\varepsilon}(F)||_{\varepsilon} \le ||\phi_{m+1} + R_{m+1}^{\varepsilon} - Q_{\varepsilon}^{\varepsilon}||_{\varepsilon} \le ||\phi_{m+1} - Q_{\varepsilon}^{\varepsilon}||_{\varepsilon} + o(1), \quad \text{as} \quad \varepsilon \to 0.$$
(16)

By Property (3), $\|\phi_{m+1}-P\|_{\varepsilon} \to \|\phi_{m+1}-P\|_0$, as $\varepsilon \to 0$. Hence, using Triangle Inequality we have

$$\begin{split} |\|\phi_{m+1} - Q_{\varepsilon}^{\varepsilon}\|_{\varepsilon} - \|\phi_{m+1} - P\|_{0}| &\leq |\|\phi_{m+1} - Q_{\varepsilon}^{\varepsilon}\|_{\varepsilon} - \|\phi_{m+1} - P\|_{\varepsilon}| \\ &+ |\|\phi_{m+1} - P\|_{\varepsilon} - \|\phi_{m+1} - P\|_{0}| \\ &\leq \|P - Q_{\varepsilon}^{\varepsilon}\|_{\varepsilon} + |\|\phi_{m+1} - P\|_{\varepsilon} - \|\phi_{m+1} - P\|_{0}| = o(1). \end{split}$$

as $\varepsilon \to 0$. Now, according to (16) we get (15). The proof finishes by observing that

$$\lim_{\varepsilon \to 0} \|E_{\varepsilon}(F)\|_{\varepsilon} \ge \inf_{P \in \mathcal{B}} \|\phi_{m+1} - P\|_0.$$
(17)

Let $\varepsilon \downarrow 0$ be a sequence such that $\lim_{\varepsilon \to 0} ||E_{\varepsilon}(F)||_{\varepsilon} = \underline{\lim}_{\varepsilon \to 0} ||E_{\varepsilon}(F)||_{\varepsilon}$. We consider $P_{\varepsilon}^{\varepsilon} \in \mathcal{P}_{\mathcal{A}^{\varepsilon},\varepsilon}(\phi_{m+1} + R_{m+1}^{\varepsilon})$. We claim that there exist constants $M, \varepsilon_0 > 0$ such that

$$\|P_{\varepsilon}^{\varepsilon}\|_{0} \le M, \quad 0 < \varepsilon \le \varepsilon_{0}.$$
⁽¹⁸⁾

Indeed, as $0 \in \mathcal{A}^{\varepsilon}$ we get

$$\begin{aligned} \|P_{\varepsilon}^{\varepsilon}\|_{\varepsilon} &\leq \|P_{\varepsilon}^{\varepsilon} - (\phi_{m+1} + R_{m+1}^{\varepsilon})\|_{\varepsilon} + \|\phi_{m+1} + R_{m+1}^{\varepsilon}\|_{\varepsilon} \\ &\leq 2\|\phi_{m+1} + R_{m+1}^{\varepsilon_{n}}\|_{\varepsilon} \\ &\leq 2\|\phi_{m+1}\|_{\varepsilon} + 2\|R_{m+1}^{\varepsilon}\|_{\varepsilon}, \end{aligned}$$
(19)

for $0 < \varepsilon \leq 1$. By Proposition 31 and Property (3), we see that $2\|\phi_{m+1}\|_{\varepsilon} + 2\|R_{m+1}^{\varepsilon}\|_{\varepsilon} \to 2\|\phi_{m+1}\|_{0}$, as $\varepsilon \to 0$. So, from (3) and (19), we obtain (18). In consequence, there exists a subsequence of $\{P_{\varepsilon}^{\varepsilon}\}$, which is denoted in the same way, and $P_{0} \in \Pi_{k}^{l}$ such that $P_{\varepsilon}^{\varepsilon} \to P$ uniformly on B, as $\varepsilon \to 0$. Since $\|\|\phi_{m+1} - P_{\varepsilon}^{\varepsilon}\|_{\varepsilon} - \|\phi_{m+1} - P\|_{0}\| \leq \|\|\phi_{m+1} - P_{\varepsilon}^{\varepsilon}\|_{\varepsilon} - \|\phi_{m+1} - P\|_{\varepsilon}\| + \|\|\phi_{m+1} - P\|_{\varepsilon}\|_{\varepsilon} - \|\phi_{m+1} - P\|_{0}\| \leq \|P - P_{\varepsilon}^{\varepsilon}\|_{\varepsilon} + \|\|\phi_{m+1} - P\|_{\varepsilon} - \|\phi_{m+1} - P\|_{0}\|$, using Property (3) we get

$$\|\phi_{m+1} - P\|_0 = \|\phi_{m+1} - P_{\varepsilon}^{\varepsilon}\|_{\varepsilon} + o(1), \text{ as } \varepsilon \to 0.$$

We observe that $P \in B$ by Corolary 26. Therefore, by Proposition 31,

$$\inf_{Q \in \mathcal{B}} \|\phi_{m+1} - Q\|_0 \le \|\phi_{m+1} - P\|_0 = \|\phi_{m+1} - P_{\varepsilon}^{\varepsilon}\|_{\varepsilon} + o(1)$$
$$\le \|\phi_{m+1} + R_{m+1}^{\varepsilon} - P_{\varepsilon}^{\varepsilon}\|_{\varepsilon} + \|R_{m+1}^{\varepsilon}\|_{\varepsilon}$$
$$= \|E_{\varepsilon}(F)\|_{\varepsilon} + \|R_{m+1}^{\varepsilon}\|_{\varepsilon}.$$

So, $\inf_{Q \in \mathcal{B}} \|\phi_{m+1} - Q\|_0 \leq \lim_{\varepsilon \to 0} \left(\|E_{\varepsilon}(F)\|_{\varepsilon} + \|R_{m+1}^{\varepsilon}\|_{\varepsilon} \right) = \underline{\lim}_{\varepsilon \to 0} \|E_{\varepsilon}(F)\|_{\varepsilon}$, and (17) is proved.

The following result provides us with a useful and important property for a net of best approximants to F from \mathcal{A} .

Theorem 33 Let \mathcal{A} be a non-zero subspace of Π_k^l with l > m, and let $\{P_{\epsilon}\}$ be a net of best approximants of F from \mathcal{A} respect to $\|\cdot\|_{\epsilon}^{*}$. Assume $F \in t^{m+1}$, $T_m \in \mathcal{A}$ and $\phi_{m+1} = T_{m+1} - T_m$. If \mathcal{C} is the cluster point set of the net $\left\{\frac{(P_{\epsilon} - T_m)^{\epsilon}}{\epsilon^{m+1}}\right\}$, as $\epsilon \to 0$, then $\mathcal{C} \neq \emptyset$. Moreover, each polynomial in \mathcal{C} is a solution of the minimization problem:

$$\min_{P \in \mathcal{B}} \|\phi_{m+1} - P\|_0. \tag{20}$$

Proof We observe

$$E_{\varepsilon}(F) = \frac{(F - P_{\varepsilon})^{\varepsilon}}{\varepsilon^{m+1}} = \frac{(T_{m+1} - T_m)^{\varepsilon} + (F - T_{m+1})^{\varepsilon} - (P_{\varepsilon} - T_m)^{\varepsilon}}{\varepsilon^{m+1}}$$
$$= \frac{\phi_{m+1}^{\varepsilon} - (P_{\varepsilon} - T_m)^{\varepsilon}}{\varepsilon^{m+1}} + \frac{(F - T_{m+1})^{\varepsilon}}{\varepsilon^{m+1}}$$
$$= \phi_{m+1} - \frac{(P_{\varepsilon} - T_m)^{\varepsilon}}{\varepsilon^{m+1}} + \frac{(F - T_{m+1})^{\varepsilon}}{\varepsilon^{m+1}}.$$

Then

$$\begin{aligned} \left\| \phi_{m+1} - \frac{(P_{\varepsilon} - T_m)^{\varepsilon}}{\varepsilon^{m+1}} \right\|_{\varepsilon} &- \frac{||(F - T_{m+1})^{\varepsilon}||_{\varepsilon}}{\varepsilon^{m+1}} \le ||E_{\varepsilon}(F)||_{\varepsilon} \\ &\leq \left\| \phi_{m+1} - \frac{(P_{\varepsilon} - T_m)^{\varepsilon}}{\varepsilon^{m+1}} \right\|_{\varepsilon} + \frac{||(F - T_{m+1})^{\varepsilon}||_{\varepsilon}}{\varepsilon^{m+1}}, \end{aligned}$$

and consequently,

$$||E_{\varepsilon}(F)||_{\varepsilon} = \left\| \phi_{m+1} - \frac{(P_{\varepsilon} - T_m)^{\varepsilon}}{\varepsilon^{m+1}} \right\|_{\varepsilon} + o(1), \quad \text{as} \quad \varepsilon \to 0,$$

since $F \in t^{m+1}$. By Theorem 32,

$$\inf_{P \in B} ||\phi_{m+1} - P||_0 = \lim_{\varepsilon \to 0} \left\| \phi_{m+1} - \frac{(P_\varepsilon - T_m)^\varepsilon}{\varepsilon^{m+1}} \right\|_{\varepsilon}.$$
 (21)

According to (3), there exist constants $\varepsilon_0, M > 0$ such that

$$\left\|\phi_{m+1} - \frac{(P_{\varepsilon} - T_m)^{\varepsilon}}{\varepsilon^{m+1}}\right\|_0 \le M,$$

for all $0 < \varepsilon \leq \varepsilon_0$. The equivalence of the norms in Π_k^l implies that the net $\left\{\frac{(P_{\varepsilon}-T_m)^{\varepsilon}}{\varepsilon^{m+1}}\right\}_{0<\varepsilon\leq\varepsilon_0}$ is uniformly bounded on B. So, there exists a subsequence of $\left\{\frac{(P_{\varepsilon}-T_m)^{\varepsilon}}{\varepsilon^{m+1}}\right\}_{0<\varepsilon\leq\varepsilon_0}$, which is denoted in the same way, and a polynomial P_0 such that

$$\frac{(P_{\varepsilon} - T_m)^{\varepsilon}}{\varepsilon^{m+1}} \text{ converge a } P_0, \text{ uniformly on } B, \text{ as } \varepsilon \to 0.$$
(22)

In consequence, $\mathcal{C} \neq \emptyset$.

On the other hand, if $P_0 \in \mathcal{C}$, there is a sequence $\varepsilon \downarrow 0$ such that $\frac{(P_{\varepsilon}-T_m)^{\varepsilon}}{\varepsilon^{m+1}} \rightarrow P_0$. Since $T_m \in \mathcal{A}$, we have $P_{\varepsilon} - T_m \in \mathcal{A}$, and so $P_0 \in \mathcal{B}$ by Corollary 26. Finally, from Property (3) and (21) we conclude that

$$\inf_{P \in B} ||\phi_{m+1} - P||_0 = \lim_{\varepsilon \to 0} \left\| \phi_{m+1} - \frac{(P_\varepsilon - T_m)^\varepsilon}{\varepsilon^{m+1}} \right\|_\varepsilon = \left\| \phi_{m+1} - P_0 \right\|_0,$$

i.e. P_0 is a solution of (20).

The following theorem is an extension of [11, Theorem 5.1].

Theorem 34 Let \mathcal{A} be a non-zero subspace of Π_k^l with l > m, and let $\{P_\epsilon\}$ be a net of best approximants of F from \mathcal{A} respect to $\|\cdot\|_{\varepsilon}^*$. Assume $m + 1 = \min\{j: 0 \le j \le l \text{ and } A_j = \{0\}\}, F \in t^{m+1}$ with $T_m \in \mathcal{A}$ and set $\phi_{m+1} = T_{m+1} - T_m$. If the minimization problem (20) has a unique solution P_0 , then $P_{\varepsilon} \to T_m + P$, where $P \in \mathcal{A}$ is uniquely determined by the condition $T_{m+1}(P) = P_0 - T_m(P_0)$.

Proof Since (20) has a unique solution P_0 , Theorem 33 implies that

$$\lim_{\varepsilon \to 0} \frac{(P_{\varepsilon} - T_m)^{\varepsilon}}{\varepsilon^{m+1}} = P_0.$$

In consequence, $\partial^{\alpha}(P_{\varepsilon}-T_m)(0) \to 0$, $|\alpha| \leq m$, and $\partial^{\alpha}(P_{\varepsilon}-T_m)(0) \to \partial^{\alpha}P_0(0)$, $|\alpha| = m + 1$, as $\varepsilon \to 0$. Therefore

$$T_{m+1}(P_{\epsilon} - T_m)(x) \to \sum_{|\alpha|=m+1} \frac{\partial^{\alpha} P_0(0)}{\alpha!} x^{\alpha} =: R(x), \ x \in B, \ \text{as } \varepsilon \to 0.$$
(23)

Let $T : \mathcal{A} \to \Pi_k^{m+1}$ be the linear operator defined by $T(P) = T_{m+1}(P)$. As $A_{m+1} = \{0\}$, an analysis similar to that in the proof of Corollary 28 shows that T is an injective operator. Since $T(\mathcal{A})$ is a closed subspace and $\{T_{m+1}(P_{\epsilon} - T_m)\} \subset T(\mathcal{A}), (23)$ implies that there exists a unique $P \in \mathcal{A}$ such that $T_{m+1}(P) = R$. Hence $T_{m+1}(P_{\epsilon} - T_m - P) \to 0$ as $\epsilon \to 0$. As $A_{m+1} = \{0\}$ we see that $\|Q\| := \|T_{m+1}(Q)\|_0$ is a norm on \mathcal{A} , and so $P_{\epsilon} \to T_m + P$ as $\epsilon \to 0$. Finally, by Theorem 25, $\mathcal{B} \subset \Pi_k^{m+1}$, and consequently $P_0 - T_m(P_0) =$ $T_{m+1}(P_0) - T_m(P_0) = R$. The proof is complete. **Remark 35** If \mathcal{A} satisfies the condition (c2), then $\mathcal{A} = \Pi_k^m \oplus A_m$ with $A_{m+1} = \{0\}$. By Corollary 28, $\mathcal{B} = \Pi_k^m \oplus T_{m+1}(A_m)$ and each element $P \in \mathcal{A}$ is uniquely determined by $T_{m+1}(P)$. So, we can rewrite the problem (20) in the following (equivalent) form:

$$\min_{Q+U \in \Pi_k^m \oplus A_m} \|\phi_{m+1} - (Q+T_{m+1}(U))\|_0.$$
(24)

The following result has been proved in [11, Theorem 5.1] and it is a consequence of Theorem 34.

Corollary 36 Let $\Pi_k^m \subset \mathcal{A} \subset \Pi_k^l$ be a non-zero subspace that satisfies the condition (c2) and let $\{P_{\epsilon}\}$ be a net of best approximants of F from \mathcal{A} respect to $\|\cdot\|_{\varepsilon}^*$. Assume $F \in t^{m+1}$. If the minimization problem (24) has a unique solution P_0 , then $P_{\varepsilon} \to T_m + P$, where $P \in \mathcal{A}$ is uniquely determined by the condition $T_{m+1}(P) = P_0 - T_m(P_0)$.

In the following example we present a function $F \in \bigcap_{m=0}^{\infty} t^m$ such that $T_2(F) \notin \mathcal{A}$ and the net $\{T_i(P_{\varepsilon})\}$ does not converge for the same i > m + 1.

Example 37 Set $B = [-1,1], ||G||_{\varepsilon} = \left(\int_{-1}^{1} |G(x)|^2 dx\right)^{\frac{1}{2}}, F(x) = x, and$ $\mathcal{A} = span\{1, x^2, x^3\}.$ So

$$||G||_{\varepsilon}^{*} = \left(\frac{1}{\varepsilon}\int_{-\varepsilon}^{\varepsilon} |G(x)|^{2} dx\right)^{\frac{1}{2}},$$

 $A_0 = A_1 = span\{x^2, x^3\}, A_2 = span\{x^3\}$ and $A_3 = \{0\}$. Since $T_1(x^2) = 0$, we observe that the subspace \mathcal{A} does not satisfies the condition (c2). Moreover, an straightforward computation shows that

$$\frac{\|F - T_0\|_{\varepsilon}^*}{\varepsilon^0} = \frac{\sqrt{6}}{3}\varepsilon \quad and \quad \frac{\|F - T_s\|_{\varepsilon}^*}{\varepsilon^s} = 0, \quad s \in \mathbb{N},$$

where $T_0(x) = 0$ and $T_s(x) = x$. In consequence, $F \in t^m$ for all $m \in \mathbb{N} \cup \{0\}$, and $T_2(F) \notin \mathcal{A}$. Since $\int_{-\varepsilon}^{\varepsilon} \left(x - \frac{7}{5\varepsilon^2}x^3\right)x^i dx = 0$, i = 0, 2, 3, then $P_{\varepsilon}(x) = \frac{7}{5\varepsilon^2}x^3$ is the best approximant to F from \mathcal{A} respect to $\|\cdot\|_{\varepsilon}^*$. Therefore $T_i(P_{\varepsilon})(x) \to 0$, for i = 0, 1, 2, but $T_3(P_{\varepsilon})(x)$ does not converge, as $\varepsilon \to 0$. So, the best local approximation to F from \mathcal{A} in 0 does not exist, and

$$||E_{\varepsilon}(F)||_{\varepsilon} = \frac{||F - P_{\varepsilon}||_{\varepsilon}^{*}}{\varepsilon^{3}} = \frac{2\sqrt{6}}{15\varepsilon^{2}} \to \infty, \quad as \quad \varepsilon \to 0$$

We now give another example which shows that the condition $T_m \in \mathcal{A}$ is not necessary for the existence of the best local approximation.

Example 38 Set B, $\|\cdot\|_{\varepsilon}^{*}$ and F as in Example 37, and we consider the subspace $\mathcal{A} = span\{1, x^{2}\}$. It is clear that $A_{0} = A_{1} = span\{x^{2}\}$, $A_{2} = \{0\}$ and $\mathcal{B} = \mathcal{A}$. Moreover, $F \in t^{2}$, $T_{1} \notin \mathcal{A}$, and \mathcal{A} does not satisfy the condition (c2) since $T_{1}(x^{2}) = 0$. As $\int_{-\varepsilon}^{\varepsilon} (x - 0) x^{i} dx = 0$, i = 0, 2, then $P_{\varepsilon}(x) = 0$ is the

best approximant to F from \mathcal{A} respect to $\|\cdot\|_{\varepsilon}^*$. Therefore, the polynomial 0 is the best local approximation to F from \mathcal{A} in 0.

References

- 1. Chui, C.K., Shisha, O., Smith, P.W.: Best Local Approximation. J. Approx. Theory. 15, 371-381 (1975).
- 2. Chui, C.K., Smith, P.W., Ward, J.D.: Best L_2 Approximation. J. Approx. Theory. 22, 254-261 (1978).
- Chui, C.K., Diamond, H., Raphael, L.A.: Best Local Approximation in Several Variables. J. Approx. Theory. 40, 343-350 (1984).
- 4. Cuenya, H.H., Ferreyra, D.E.: C^p Condition and the Best Local Approximation. Anal. Theory Appl. 31, 58-67 (2015).
- Favier, S.: Convergence of Function Averages in Orlicz Spaces. Numer. Funct. Anal. Optim. 15, 263-278 (1994).
- 6. Headley, V.B., Kerman, R.A.: Best Local Approximation in $L^p(\mu)$. J. Approx. Theory. 62, 277-281 (1990).
- Macias, R., Zó, F.: Weighted Best Local L^p Approximation. J. Approx. Theory. 42, 181-192 (1984).
- Maehly, H., Witzgall, Ch.: Tschebyschev Approximationen in Kleinen Intervalen I. Approximation durch Polynome. Numer. Math. 2, 142-150 (1960).
- Walsh, J.L.: On approximation to an analitic function by rational functions of best approximation. Math. Z. 38, 163-176 (1934).
- Wolfe, J.M.: Interpolation and Best Lp Local Approximation. J. Approx. Theory. 32, 96-102 (1981).
- Zó, F., Cuenya, H.H.: Best approximations on small regions. A general approach. In: Advanced Courses of Mathematical Analysis II, Proceedings of Second International School, pp. 193-213. World Scientific, Granada (2004).