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Abstract

In this paper, we extend results given by Zó and Cuenya in 2007 about a general approach to

problems of best vector-valued approximation on small regions from a finite dimensional subspace

of polynomials of some degree. This approach is called best local approximation. We consider a

weighted local approximation of a vector valued function on the origin and a weighted best local

approximation of a real valued function on several points, similar to classical problems in best

local approximation with balanced neighborhood.
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1 Introduction

In 1934, Walsh proved in [13] that the Taylor polynomial of degree l for an analytic function f can be

obtained by taking the limit as ε→ 0 of the best Chebyshev approximation to f from πl on the disk

|z| ≤ ε, where πl is the class of polynomials of degree at most l. This paper was the first association

between the best local approximation to a function f from πl in 0 and the Taylor polynomial for f

at the origin. However, the concept of best local approximation was introduced by Chui, Shisha, and

Smith in [4]. More recently, the best local approximation on several points has been developed in Lp

spaces, by [1], [11], [12], [10] and [7], in Orlicz spaces by [9] and with abstract seminorms by [15]. All

these studies have considered neighborhoods with the same size on each point. The theory on several

points with neighborhoods with different sizes has been introduced by [3] in Lp spaces, and developed

by [6], [5] and [8] in Orlicz spaces and by [14] in approaching with abstract seminorms.
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00433CO)
†Universidad Nacional de San Luis, CONICET, IMASL, Almirante Brown 907, 5700, San Luis, Argentina. E-mail:

ridolfi@unsl.edu.ar



We consider a family of function seminorms {‖ · ‖ε}ε>0, acting on Lebesgue measurable functions

F : B ⊂ Rn → Rk, where B is the unit ball centered at the origin in Rn. Given a fixed k-tuple of real

numbers γ = (γ1, ..., γk), with γi > 0, we denote for each ε > 0, F ε
γ

(x) = (f1(εγ1x), ..., fk(εγkx)) and

||F ||∗ε = ||F εγ ||ε. For m ∈ N ∪ {0}, we denote by πm the class of algebraic polynomials in n-variables

of degree at most m, and Πm1,...,mk the set {P = (p1, . . . , pk) : pi ∈ πmi}, with mi ∈ N0 for i = 1, ..., k.

When m1 = m2 = ... = mk = m, we write Πm
k .

Let {Pε}ε>0 be a net of best approximants to F from Πm1,...,mk with respect to ‖ · ‖∗ε, i.e., Pε ∈

Πm1,...,mk and

‖F − Pε‖∗ε ≤ ‖F − P‖∗ε, for all P ∈ Πm1,...,mk . (1.1)

If the net {Pε}ε>0 has a limit as ε → 0, this limit is called the best local approximation to F from

Πm1,...,mk on the origin.

In [15], the authors studied the problem (1.1) when γ1 = γ2 = ... = γk = 1 and m1 = ... = mk.

The authors define the class tm as the functions F which have a Taylor polynomial of degree m at 0 in

some sense. They proved the existence of the best local approximation to F in 0, and it was associated

with the Taylor polynomial of F at 0.

In this paper, we study the problem (1.1) and we extend the result of [15] to a net of seminorms that

depends on the weight parameters γ1, γ2, ..., γk. We consider an approach of a function F = (f1, ..., fk)

with different weights on each function fi. For this purpose, we define a new concept of Taylor

polynomial of F , whose degree of the ith component is at most mi − 1. We also define a new concept

of balanced k−tuple (m1, ...,mk). This k−tuple satisfies a condition relating the order of the Taylor

polynomial with the weight (εγ1 , ..., εγk).

Now, we present an alternative problem to (1.1) that includes classical problems of best multipoint

local approximation to a function f when the weight εγ1 = εγ2 = ... = εγk .

Let {x1, ..., xk} ⊂ [−1, 1] and letM be the set of Lebesgue measurable functions f : [−2, 2] ⊂ R→

R. We define

Lf(x) := (f(x1 + x), ..., f(xk + x)), x ∈ [−1, 1], f ∈M.

Given a positive integer N , we study the best local approximation to Lf from the set {Lp : p ∈ πN−1}

with respect to ‖.‖∗ε , i.e., for each ε > 0, let pε be a polynomial in πN−1 that minimizes the error

||L(f)− L(p)||∗ε , (1.2)

for all p ∈ πN−1. If the net {pε}ε>0 converges to a limit in πN−1, this limit is called best multipoint

local approximation of f on x1, ..., xk.

This problem, for γ1 = γ2 = ... = γk, has been studied in [12] and [7] for the classical Lp seminorms,

in [9] for classical Luxemburg norm and in [15] for abstract seminorms.
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In [3], the authors introduced a concept of balanced neighborhoods and balanced integers to solve

a problem of best multipoint local approximation in Lp spaces. Later, [6], [5] and [8] extended these

studies to Orlicz spaces with Luxemburg seminorms.

In this paper, we study the problem (1.2) which generalizes some results given in [15] to a net of

seminorms that depends on the parameters γ1, γ2, ..., γk to weight the points x1, x2, ..., xk differently.

For this purpose, we define a new concept of balanced integers in the context of this work.

This paper is organized as follows. In section 2, we set up conditions over the net of seminorms

and define a balanced k−tuple, study its properties and give an algorithm which generates them. In

section 3, we define a Taylor polynomial of a function on the origin, study its properties and present

some preliminary results. In section 4, we show some results on the best local approximation of a

function F on the origin, when the approximation class is Πm1,...,mk and (m1, ...,mk) is a balanced

k-tuple. Then, we present some preliminary results to extend classical theorems of best multipoint

local approximation of a function f . Finally, we solve the problem (1.2).

2 The norm set up and Balanced Integers

Throughout the paper, we assume the following properties for the family of seminorms ‖·‖ε, 0 ≤ ε ≤ 1.

We rewrite these properties from [15, page 195].

(1) For F = (f1, . . . , fk) and G = (g1, . . . , gk), we have ‖F‖ε ≤ ||G||ε for every ε > 0, whenever

|fs| ≤ |gs|, s = 1, . . . , k.

(2) If 1 is the function F (x) = (1, . . . , 1), we have ‖1‖ε <∞ for all ε > 0.

(3) For every F ∈ Ck(B), we have ‖F‖ε → ‖F‖0, as ε → 0, where Ck(B) is the set of continuous

functions F : B ⊂ Rn → Rk. Moreover, ‖ · ‖0 is a norm on Ck(B).

A simple example of a net of seminorms fulfilling conditions (1)-(3) is ||F ||ε =

(
k∑
i=1

∫ 1

−1 |fi(x)|p+ε dx
)1/p+ε

for ε > 0, with p > 1. For other examples of nets of seminorms fulfilling conditions (1)-(3), we refer

the reader to [15, section 2].

In particular, when n = 1, let us denote the seminorms ||F ||ε,p :=

(
k∑
i=1

∫ 1

−1 |fi(x)|p dx
)1/p

for ε > 0

and p > 1. In this case, the seminorm ‖ · ‖∗ε,p of a function F = (f1, ..., fk) is

||F ||∗ε,p =

 k∑
i=1

εγi∫
−εγi

|fi(x)|p dx
εγi

1/p

. (2.1)

We will use the net of seminorms {‖ · ‖ε,p}ε>0 in several examples throughout this paper.
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In relation to balanced integers, we can see that in the problem (1.1), εγ1 , ..., εγk produce different

weights over the functions f1, ..., fk in the approximation. On the other hand, in the problem (1.2),

εγ1 , ..., εγk produce different weights over the points x1, ..., xk. In this section, we define the balanced

integers, which is a concept that depends on weight and approximation class. We give some properties

of these integers. Also, we present a form to obtain balanced integers thought an algorithm.

In [3], the authors introduced the concept of balanced integer to solve a problem of best multipoint

local approximation in Lp spaces. Now, we define a new concept of balanced integer in the context of

this paper.

Given a k-tuple of non negative integers (m1, ...,mk) and a k-tuple of real numbers γ = (γ1, ..., γk),

with γi ∈ R+, we denote γi0mi0 = min
1≤i≤k

{γimi}.

Definition 2.1. A k−tuple of non negative integers (m1, ...,mk) is balanced if, for each mi > 0,

εγi0mi0 = o(ε(mi−1)γi), as ε→ 0. In this case, we denote N =
k∑
i=1

mi as a balanced integer.

We can see that 0 is a balanced integer. Additionally, under the assumption γ1 = ... = γk, this

concept of balanced integer is equivalent to that introduced in [3].

Example 2.2. Given γ = (3, 2, 1), we have that (1,2,3) and (1,3,3) are balanced 3-tuples. So N = 6

and N = 7 are balanced integers. In fact, (1, 2, 3) is balanced because γi0mi0 = 3, ε3 = o(ε2) and

ε3 = o(1) for each mi > 0. Analogously, we can compute that (1,3,3) is balanced.

Remark 2.3. It is easy to see that if γ1 = ... = γk, a k-tuple M = (m1, ...,mk) is balanced if and

only if M = (m, ...,m). In the literature, it is known as the multiple case because N =
∑k
i=1m is a

multiple of k. In this case, the approximation in the problem (1.1) is from Πm
k while in the problem

(1.2) it is from πkm−1, as in [15].

The balanced integer concept yields a connection between the weight εγ1 , ..., εγk and the degree

m1, ...,mk of the approximation class. This connection allows us to solve the problems (1.1) and (1.2).

Now, we will see that, given γ = (γ1, ..., γk), a balanced integer is uniquely related with a unique

balanced k-tuple.

Proposition 2.4. Given γ = (γ1, ..., γk), to each balanced integer with respect to γ there corresponds

exactly one balanced k−tuple.

Proof. Let be (m1, ...,mk) a balanced k−tuple and (m1, ...,mk) a different k-tuple such that N =∑k
i=1mi =

∑k
i=1mi.

So, there exist s, j with mj ≤ mj − 1 and ms ≤ ms − 1. We denote γi0mi0 = min
1≤i≤k

{γimi} and

γi1mi1 = min
1≤i≤k

{γimi}. Then

εγi0mi0 = o(εγs(ms−1)) = o(εγsms) = o(εγi1mi1 ).
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Thus,
εγi1mi1

εγj(mj−1)
≥ εγi1mi1

εγjmj
≥ εγi1mi1

εγi0mi0
→∞,

as ε→ 0. Therefore, (m1, ...,mk) cannot be a balanced k−tuple.

Proposition 2.5. Given a k−tuple M = (m1, ...,mk) with integers mi > 0, there exists a k-tuple

γ = (γ1, ..., γk) such that M is a balanced k−tuple with respect to γ.

Proof. In fact, we can consider γi = 1
mi

, 1 ≤ i ≤ k.

Throughout the paper, γ = (γ1, γ2, ..., γk) will denote a fixed k-tuple of real numbers with γi > 0.

All the balanced k-tuples and balanced integers are balanced with respect to γ. The net of seminorms

{‖.‖∗ε}ε>0 is also with respect to γ.

The following two results allow us to state an algorithm to compute exactly all the balanced k-

tuples. For this purpose, we define the following sets. Given a balanced k−tuple (m1, ...,mk), set

A := {j : γjmj = min
1≤i≤k

{γimi}} and B := {j : j /∈ A}. (2.2)

Lemma 2.6. Let (m1, ...,mk) and (q1, ..., qk) be two balanced k-tuples with
∑n
i=1mi <

∑n
k=1 qi.

Consider the sets A and B defined in (2.2) for the k−tuple (m1, ...,mk). Then

a) if j ∈ A, then qj ≥ mj + 1;

b) if j ∈ B, then qj ≥ mj.

Proof. Throughout the proof we denote γsqs = min
1≤i≤k

{γiqi}.

a) Suppose to the contrary that qj ≤ mj for some j ∈ A. By hypothesis, there is an index l such

that ql ≥ ml + 1. Then,

εγsqs

εγl(ql−1)
≥ εγjqj

εγl(ql−1)
≥ εγjqj

εγlml
≥ 1 as ε→ 0,

and (q1, ..., qk) cannot be balanced. So, we obtain that qj ≥ mj + 1 for all j ∈ A.

b) It is obvious when mj = 0 for all j ∈ B. Now, suppose that q′j < mj for some j ∈ B. Then, for

l ∈ A, from a) we known that ql > 0 and ql − 1 ≥ ml, so

εγsqs

εγl(ql−1)
≥ εγjqj

εγlml
≥ εγj(mj−1)

εγlml
→∞ as δ → 0,

where the last condition holds because (m1, ...,mk) is balanced. Therefore, (q1, ..., qk) cannot be

balanced. So, we obtain that qj ≥ mj for all j ∈ B.

Given a balanced integer, the above lemma gives us a necessary condition which must satisfy the

next balanced integer. The following proposition shows that the equality in this condition generates

exactly the following balanced integer.
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Proposition 2.7. Given a balanced k−tuple (m1, ...,mk), consider the sets A and B defined in (2.2).

Then, the k-tuple (q1, ..., qk) defined by qj = mj + 1, j ∈ A, and qj = mj, j ∈ B, is balanced.

Proof. Let γsqs = min
1≤i≤k

{γiqi} and ql > 0. Then

εγsqs

εγl(ql−1)
=



εγs(ms+1)

εγlml = εγs = o(1), if s ∈ A and l ∈ A;

εγs(ms+1)

εγl(ml−1) = εγsms

εγl(ml−1) ε
γs = o(1), if s ∈ A and l ∈ B, by balanced definition;

εγsms

εγlml = o(1), if s ∈ B and l ∈ A;

εγsms

εγl(ml−1) ≤ ε
γi0mi0

εγl(ml−1) = o(1), if s ∈ B and l ∈ b, where i0 is an index in A.

So, (q1, ...qm) is balanced.

An algorithm was given in [3] which generates all balanced integers in the sense of Chui et. al. in

Lp spaces. It was restated and generalized to Luxemburg seminorms in [6] and [5].

Next, we present an algorithm analogous to that in [3], which inductively generates exactly all the

balanced k-tuples, i.e., it generates all balanced k−tuples (m
(m)
1 , ...,m

(m)
k ), such that

∑k
i=1m

(m)
i is a

balanced integer.

Algorithm. Begin with the balanced k−tuple (m
(0)
1 , ...,m

(0)
k ) = (0, ..., 0) corresponding to the bal-

anced integer 0. Then, in each step, given a k-tuple (m
(m)
1 , ...,m

(m)
k ) for m ≥ 0, determine the index

set A(m) = {j : γjm
(m)
j = min

1≤i≤k
{γim(m)

i }}.

To build the next k−tuple (m
(m+1)
1 , ...,m

(m+1)
k ), put m

(m+1)
i = m

(m)
i + 1, for i ∈ A(m), and m

(m+1)
i =

m
(m)
i , for i /∈ A(m).

The super index (m) denote the number of steps in the algorithm minus one.

Lemma 2.8. The above algorithm generates exactly all balanced k-tuples.

Proof. From Proposition 2.4, to each balanced integer there corresponds exactly one balanced k−tuple.

Thus, as a consequence of Lemma 2.6 and Proposition 2.7, an integer N is balanced if only if N =∑n
i=1mi for some balanced k-tuple (m1, ...,mk) generated by this algorithm.

Now, we present an example with simple computation to understand the algorithm.

Example 2.9. Given γ = (3, 4, 2).

The algorithm generates the first balanced 3-tuple (m
(0)
1 ,m

(0)
2 ,m

(0)
3 ) = (0, 0, 0), which corresponds to

the balanced integer N = 0. Then

A(0) = {j : γjm
(0)
j = min{γ1m(0)

1 , γ2m
(0)
2 , γ3m

(0)
3 }} = {j : γjm

(0)
j = min{0, 0, 0}} = {1, 2, 3}.

The second balanced 3-tuple is (m
(1)
1 ,m

(1)
2 ,m

(1)
3 ) = (1, 1, 1), which corresponds to the balanced integer

N = 3. Then

A(1) = {j : γjm
(1)
j = min{γ1m(1)

1 , γ2m
(1)
2 , γ3m

(1)
3 }} = {j : γjm

(1)
j = min{3, 4, 2}} = {3}.
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The following balanced 3-tuple is (m
(2)
1 ,m

(2)
2 ,m

(2)
3 ) = (1, 1, 2), which corresponds to the balanced integer

N = 4. Then

A(2) = {j : γjm
(2)
j = min{γ1m(2)

1 , γ2m
(2)
2 , γ3m

(2)
3 }} = {j : γjm

(2)
j = min{3, 4, 4}} = {1}.

The following balanced 3-tuple is (m
(3)
1 ,m

(3)
2 ,m

(3)
3 ) = (2, 1, 2), which corresponds to the balanced integer

N = 5. Then

A(3) = {j : γjm
(3)
j = min{γ1m(3)

1 , γ2m
(3)
2 , γ3m

(3)
3 }} = {j : γjm

(3)
j = min{6, 4, 4}} = {2, 3}.

The following balanced 3-tuple is (m
(4)
1 ,m

(4)
2 ,m

(4)
3 ) = (2, 2, 3), which corresponds to the balanced integer

N = 7. Then

A(4) = {j : γjm
(4)
j = min{γ1m(4)

1 , γ2m
(4)
2 , γ3m

(4)
3 }} = {j : γjm

(4)
j = min{6, 8, 6}} = {1, 3}.

The following balanced 3-tuple is (m
(5)
1 ,m

(5)
2 ,m

(5)
3 ) = (3, 2, 4), which corresponds to the balanced integer

N = 9. And so on.

3 The Taylor polynomial

Now, we introduce a generalized version of Taylor polynomial. When γ1 = ... = γk, it generalizes the

definition of Taylor polynomial given by A. P. Calderón and A. Zygmund in [2].

Definition 3.1. Given a k-tuple M = (m1, ...,mk) with positive integers mi, a function F : B ⊂

Rn → Rk has a Taylor polynomial of degrees m1 − 1, ...,mk − 1 if there exists TM−1 = TM−1(F ) ∈

Πm1−1,...,mk−1 such that

||F − TM−1||∗ε = O(εγi0mi0 ),

where γi0mi0 = min
1≤i≤k

{γimi}. In this case, we write F ∈ tM−1.

Note that if γ1 = ... = γk and m1 = ... = mk = m, the class of function which have a Taylor

polynomial in Πm1−1,...,mk−1 is more restrictive than the class given in [15, Definition 3.1]. Therefore,

the results we generalize from [15] are generalized considering the class tM−1 in the sense of the present

work.

In the following example, we present a function F that does not have Taylor polynomial TM−1 for

some M > 0.

Example 3.2. Let be k = 1 γ = (γ1) and M = (1). Then, the function defined by F (x) = 1, for

x ≥ 0, and F (x) = −1, for x < 0, does not have any Taylor polynomial in π0 with respect to the

seminorms in L1 defined in (2.1). In fact, any polynomial T0(x) = c ∈ π0, with c ∈ R, satisfies that

‖F − T0‖∗ε,1 =
∫ εγ1
−εγ1 |F − T0|

dx
εγ1 = C 6= o(ε) = O(εγi0mio ), where the constant C only depends on T0.

So F /∈ tM−1.
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However, under some condition about the function, we can prove the existence of the Taylor

polynomial as we present in the following proposition.

Given α = (α1, ..., αk) ∈ Nk with αi ≥ 0, we denote

∂αf :=
∂αf

∂α1x1...∂αkxk
, |α| := α1 + ...+ αk, xα := xα1

1 ...xαkk .

If F ∈ tM−1 and T = TM−1(F ) =
∑

0≤|α|≤m Cαx
α, we set ∂αF (0) for the vector α!Cα with α! =

α1!α2!.....αk!. In particular, if Lf ∈ tM−1 we set (∂αf(x1), ..., ∂αf(xk)) for tha vector α!Cα.

Proposition 3.3. Given a k-tuple M = (m1, ...,mk), if F : B ⊂ Rn → Rk with F = (f1, ..., fk) is a

function such that fi ∈ Cmi(B), for i = 1, ..., k, then F ∈ tM−1.

Proof. We have that F εγ(x) = (f1(εγ1x), ..., fk(εγkx)), x ∈ B. Using, for each index i the usual Taylor

polynomial of the function fi of degree mi − 1 around the origin, Ti,mi−1, we obtain that

fi(ε
γix) =

mi−1∑
|α|=0

∂αfi(0)

|α|!
εγi|α|xα +O(εγimi) =: Ti,mi−1(εγix) +O(εγimi), x ∈ B.

Denote TM−1 = (T1,m1−1, ..., Tk,mk−1). So, there exists a constant M > 0 such that

|fi(εγix)− Ti,mi−1(εγix)| ≤M |εγimi | ≤M ′|εγi0mi0 |, x ∈ B.

Using the monotony of the seminorms ||.||ε,

||F ε
γ

− T ε
γ

M−1||ε ≤M ′εγi0mi0 ||1||ε.

So, by the second condition about seminorms,

||F − TM−1||∗ε = O(εγi0mi0 ), ε→ 0.

So F ∈ tM−1 as we required.

In the following example, we present a function F ∈ tM−1 whose Taylor polynomial is not unique.

Example 3.4. Given γ = (3, 2) and the not balanced k−tuple M = (3, 3), let define the function

F = (f1, f2), with f1(x) = x3 and f2 ∈ π2. We will prove that T = (T1, f2) and T = (T 1, f2) are both

Taylor polynomials of F with respect to the seminorms in L1 defined in (2.1), where T1(x) = 0 and

T 1(x) = x2. In fact, we must prove that

||F − TM−1||∗ε,1 =

∫ ε3

−ε3
|f1 − T1|

dx

ε3
= o(ε6) ( or

∫ ε3

−ε3
|f1 − T 1|

dx

ε3
= o(ε6)). (3.1)

On the other hand, we have that ∫ ε3

−ε3
|f1 − T1|

dx

ε3
=
ε9

2
,
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and ∫ ε3

−ε3
|f1 − T 1|

dx

ε3
= −ε

9

2
+ 2

ε6

3
≤ 2

ε6

3
.

So, T and T satisfy the condition (3.1).

To prove the uniqueness of the Taylor polynomial we present some auxiliary results. To this purpose

we now cite [15, Proposition 3.1].

Proposition 3.5. There exist C = C(m, k) and 0 < ε(m) such that, for all 0 < ε ≤ ε(m),

C−1||P ||0 ≤ ||P ||ε ≤ C||P ||0,

for all P ∈ Πm
k .

As a consequence we obtain the following Corollary.

Corollary 3.6. There is a constant C > 0 such that

|∂αpi(0)| ≤ C||P εγ ||ε
ε|α|γi

,

for all P = (p1, ..., pk) ∈ Πm1−1,...,mk−1, 0 ≤ |α| ≤ mi − 1, 1 ≤ i ≤ k.

Proof. From Proposition 3.5 we obtain that

||P ε
γ

||0 ≤ C||P ε
γ

||ε,

for all P ∈ Πm1−1,...,mk−1 and for all ε > 0. Denote P = (p1, ..., pk) ∈ Πm1−1,...,mk−1. So, the function

||P || := max
1≤i≤k

max
0≤|α|≤mi−1

|∂αpi(0)| is a norm on Πm1−1,...,mk−1. Then, from the norm equivalence,

using P ε
γ

(x) = (p1(εγ1x), ..., pk(εγkx)), we obtain that

max
1≤i≤k

max
0≤|α|≤mi−1

|∂αpi(εγkx) |x=0 | ≤ C||P ε
γ

||ε.

So

max
1≤i≤k

max
0≤|α|≤mi−1

|εγi|α|∂αpi(0)| ≤ C||P ε
γ

||ε,

for all P ∈ Πm1−1,...,mk−1. Then

|εγi|α|∂αpi(0)| ≤ C||P ε
γ

||ε,

for all P = (p1, ..., pk) ∈ Πm1−1,...,mk−1, 0 ≤ |α| ≤ mi − 1, 1 ≤ i ≤ k.

Now, under some conditions, we prove the uniqueness of the Taylor polynomial of a vector valued

function F . Using remark 2.3, the following theorem extends [15, Proposition 3.3].

Theorem 3.7. Given M = (m1, ...,mk) with mi > 0, and F ∈ tM−1, M is a balanced k−tuple if and

only if the Taylor polynomial of the function F is unique.
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Proof. Let M = (m1, ...,mk) be a balanced k-tuple. Suppose that there are two Taylor polynomials

of F , TM−1 and TM−1. Then ||TM−1 − TM−1||∗ε = O(εγi0mi0 ). We denote TM−1 = (p1, ..., pk) and

TM−1 = (p1, ..., pk). Using Corollary 3.6 for TM−1 − TM−1 and the definition of balanced k-tuple M ,

we obtain that

|∂α(pi − pi)(0)| ≤ C

ε|α|γi
||TM−1 − TM−1||∗ε ≤ C ′

εγi0mi0

ε(mi−1)γi
= o(1),

as ε→ 0, for 0 ≤ |α| ≤ mi − 1, 1 ≤ i ≤ k. Then, the norm

||TM−1 − TM−1|| := max
1≤i≤k

max
0≤|α|≤mi−1

|∂α(pi − pi)(0)| = 0.

So, TM−1 = TM−1 as we required. On the other hand, suppose that M is not balanced. Then there

exists an index i such that ε
γi0

mi0

εγi(mi−1) 6= o(1), as ε → 0. Therefore, γi0mi0 ≤ γi(mi − 1). Denote

by TM−1 = (p1, ..., pk) the unique Taylor polynomial of F in Πm1−1,...,mk−1. Define TM−1(x) =

(p1(x), ..., pi(x) +xmi−1, ..., pk(x)) and G(x) = (0, ..., xmi−1, ...0), where the monomial xmi−1 is the ith

component of G. Then, using properties (1) and (2) of the net {‖‖ε}ε, we obtain ‖G‖∗ε ≤ ‖1‖∗ε εγi(mi−1).

Therefore, using γi0mi0 ≤ γi(mi − 1), we obtain

‖F − TM−1‖∗ε ≤ ‖F − TM−1‖∗ε + ‖G‖∗ε = O(εγi0mi0 ).

So, TM−1 is another Taylor polynomial of F , which yields a contradiction.

4 Best Local Approximation

Now, we study the problem of best local approximation (1.1) of a vector-valued function F on the

origin. Given a function F : B → Rn and a k−tuple M = (m1, ...,mk), denote by Pε the best

approximation to F from Πm1−1,...,mk−1 with respect to the net of seminorms ‖.‖∗ε . We can see that

Pε exists if F ∈ C(B), although it can be non unique.

The following theorem proves the existence of the best local approximation of F on the origin and

gives a characterization of this approximation. It extends [15, Theorem 3.1] to local approximation

with different weights. Denote Mε(F ), for ε > 0, as the set of best approximations Pε to F from

Πm1−1,...,mk−1.

Theorem 4.1. Let M = (m1, ...,mk) be a balanced k−tuple and F ∈ tM−1. Then,

sup
Pε∈Mε(F )

||TM−1 − Pε||L∞(B) → 0, as ε→ 0.

Proof. Using the triangular inequality, we obtain that ||TM−1 − Pε||∗ε = O(εγi0mi0 ). Denote Pε =

(pε,1, ..., pε,k) and TM−1 = (p1, ..., pk) as two k−tuples of polynomials in Πm1−1,...,mk−1. From Corollary
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3.6, there exist constants C = C(k,m) and C ′ such that

|∂α(pε,i − pi)| ≤
C ||Tm−1 − Pε||∗ε

ε|α|γi
≤ C ′ ε

γi0mi0

ε(mi−1)γi
o(1),

as ε→ 0, for 0 ≤ |α| ≤ mi − 1, 1 ≤ i ≤ k. Then

||Tm−1 − Pε|| := max
1≤i≤k

max
0≤|α|≤mi−1

|∂α(pε,i − pi)| = o(1),

as ε→ 0. So, by the norm equivalence on Πm1−1,...,mk−1, we obtain ||TM−1−Pε||L∞(B) → 0, as ε→ 0.

Since the constants C, C ′ and the equivalence constant only depend on m, k, TM−1, the convergence

does not depend on the election of Pε. Therefore,

sup
Pε∈Mε(F )

||Tm−1 − Pε||L∞(B) → 0, as ε→ 0.

Remark 4.2. Under the hypothesis of Theorem 4.1, TM−1 is the best local approximation to F on the

origin and the convergence is uniform and independent from the selection of the net {Pε}ε>0.

Example 4.3. Given γ = (3, 2) and the balanced k−tuple M = (1, 1), we define the function F =

(f1, f2), with f1(x) = 5
3x for x ≥ 0, f1(x) = x for x < 0, and f2(x) = 1

2 for x ∈ R. We will prove that

T = (T1, T2) with T1(x) = 0 and T2(x) = 1
2 , for x ∈ [−1, 1] is the Taylor polynomial of F with respect

to the seminorms in L1 defined in (2.1). In fact, T ∈ Π0
2 and we prove that

||F − T ||∗ε,1 =

∫ ε3

−ε3
|f1|

dx

ε3
=

∫ ε3

0

5

3
x
dx

ε3
+

∫ 0

ε3
|x|dx

ε3
=

5

4
ε2 +

1

2
ε2 = O(ε2).

Then, from Theorem 4.1, Pε → T as ε→ 0, i.e., T is the best local approximation of F on the origin

with respect to the seminorm ‖ · ‖∗ε,1.

Remark 4.4. We observe that, given a polynomial P = (p1, ..., pk) ∈ Πm1−1,...,mk−1, whose component

pi interpolates the derivatives f
(j)
i (0), 0 ≤ j ≤ mi − 1, for 1 ≤ i ≤ k, of a certain function F =

(f1, ..., fk). From Proposition 2.5, there exists a scaling (εγ1 , ..., εγk) such that M = (m1, . . . ,mk) is a

balanced k-tuple. Using the proof of Proposition 3.3, P ∈ Πm1−1,...,mk−1 is the Taylor polynomial of

F . Then, using the above theorem P is the best local approximation of F from Πm1−1,...,mk−1 on the

origin with respect to ‖ · ‖∗ε .

From now on, we will study the problem (1.2). The following example shows that the best multi-

point local approximation of a function may not exist.

Example 4.5. Let x1 = 0, x2 = 1, γ = (2, 1). We consider the problem (1.2) approaching a function

f with respect to the seminorms in L1 defined in (2.1). The function f is defined as f(x) = 0, for
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x ≤ 1/2, and f(x) = 1, for x > 1/2. Let N = 1 be a not balanced integer, i.e., we must approximate f

from constant polynomials. It is easy to see that the best approximation pε ≡ a satisfies that 0 ≤ a ≤ 1.

For each ε > 0, we have to minimize

2∑
i=1

∫ xi+ε
γi

xi−εγi
|f(x)− a| dx

εγi
=

∫ ε2

2

− ε22
a
dx

ε2
+

∫ 1+ ε
2

1− ε2
(1− a)

dx

ε
= 1,

for all 0 ≤ a ≤ 1. Then, we obtain that all the polynomials pε = a, with 0 ≤ a ≤ 1, are the best

approximations of the function f for each ε > 0. Thus there is no best multipoint local approximation

of f .

Now, we state some definitions and preliminary results to solve problem (1.2). The following

proposition extends [15, Proposition 3.6].

Proposition 4.6. Let M = (m1, ...,mk) and N =
k∑
i=1

mi. The function Lf ∈ tM−1 if and only if

there exists a polynomial h ∈ πN−1 such that ||L(f) − L(h)||∗ε = O(εγi0mi0 ), as ε → 0. Moreover, if

there exists h, it is unique and it is called the Hermite interpolation polynomial since it interpolates

the data f (j)(xi) for 0 ≤ j ≤ mi − 1, 1 ≤ i ≤ k.

Proof. If P ∈ Πm1−1,...,mk−1, there exists a unique polynomial h ∈ πN−1 which interpolates hα(xi) =

pαi (0), 0 ≤ α ≤ mi − 1, 1 ≤ i ≤ k, where P = (p1, ..., pk). Then, the function I : Πm1−1,...,mk−1 →

πN−1, with I(P ) = h, is an isomorphism. Furthermore,

||P − L(h)||∗ε = O(εγi0mi0 ).

In fact, we know that (P − L(h))ε
γ

(x) = (p1(εγ1x) − h(x1 + εγ1x), ..., pk(εγkx) − h(xk + εγkx)),

x ∈ [−1, 1]. Using the usual Taylor polynomial of h on the origin, for each index i, we obtain

pi(ε
γix) =

mi−1∑
|α|=0

pαi (0)
|α|! ε

γi|α|xα =
mi−1∑
|α|=0

hα(xi)
|α|! εγi|α|xα = h(xi + εγix) − O(εγimi). Then, |pi(εγix) −

h(xi + εγix)| = O(εγi0mi0 ), 1 ≤ i ≤ k. Therefore, ||P − L(h)||∗ε ≤Mεγi0mi0 ||1||ε as we required.

Now, if h ∈ πN−1 satisfies that ||L(f)−L(h)||∗ε = O(εγi0mi0 ), using triangular inequality, we obtain

||L(f)−P ||∗ε = O(εγi0mi0 ), where P ∈ Πm1−1,...,mk−1 such that I(P ) = h, i.e., L(f) ∈ tM−1. If the last

condition holds, using triangular inequality, we obtain ||L(f)−L(h)||∗ε = O(εγi0mi0 ) for h = I(P ).

The following result shows the existence and characterization of the best multipoint local approx-

imation of f from πN−1. It extends the work in [15, page 204] about the problem (1.2) with respect

to the seminorms in Lp defined in (2.1) when γ1 = ... = γk. We denote by mε(f) the set of best

approximation pε of f from πN−1 on x1, ..., xk with respect the net ‖.‖∗ε .

Theorem 4.7. If M = (m1, ...,mk) is a balanced k−tuple, N =
k∑
i=1

mi and Lf ∈ tM−1, there exists a

polynomial h ∈ πN−1 such that

sup
pε∈mε(f)

||pε − h||L∞([−1,1]) → 0, as ε→ 0.
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Proof. From Proposition 4.6, there exists a polynomial h ∈ πN−1 with the condition ||L(f)−L(h)||∗ε =

O(εγi0mi0 ). Using triangular inequality and the definition of best approximation, we obtain ||L(pε)−

L(h)||∗ε = O(εγi0mi0 ). Since L(h− pε) ∈ ΠN−1
k , from Proposition 3.6, we obtain that

|∂α(h− pε)(xi)| ≤
C(N, k)

εαγi
||L(pε)− L(h)||∗ε , for 0 ≤ α ≤ N − 1, 1 ≤ i ≤ k.

In particular, this occurs in 0 ≤ α ≤ mi − 1. Using εγimi−1 ≤ εγiα and the definition of balanced

k−tuple, we obtain that |∂(h− pε)(xi)| = o(1), as ε→ 0, for 0 ≤ α ≤ mi − 1, 1 ≤ i ≤ k. Therefore,

||h− pε|| := max
1≤i≤k

max
0≤α≤mi−1

|∂α(h− pε)(xi)| = o(1),

as ε → 0. Now, from the equivalence of norms, since the constants used are independent from the

selected net {pε}, we obtain the required result.

Remark 4.8. In particular, under the hypothesis of Theorem 4.7, there exists the best multipoint local

approximation of f from πN−1. It is the polynomial h ∈ πN−1 which interpolates the data fα(xi),

0 ≤ α ≤ mi − 1, 1 ≤ i ≤ k. Moreover, the convergence is uniform on [−1, 1], and independent from

the selection of pε ∈ mε(f).

Example 4.9. Let us consider x1 = 0, x2 = 1, γ = (2, 1), the balanced 2-tuple M = (1, 1) and the

balanced integer N = 2. The function f is defined as f(x) = 0, for x ≤ 1/2, and f(x) = 1
2 , for

x > 1/2. Then Lf(x) = (f(0 +x), f(1 +x)) = (3, 12 ), for x ∈ (− 1
2 ,

1
2 ). It is easy to see that Lf ∈ tM−1

with Taylor polynomial T = (T1, T2) = (0, 12 ). From the proof of Proposition 4.6 and Theorem 4.7, the

polynomial h ∈ π1 and h(x1) = T1(0) and h(x2) = T2(0). Thus, h(x) = 1
2x and pε → h, as ε → 0, i.

e., h is the best multipoint local approximation of f from π1 with respect the seminorms ‖.‖∗ε .
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