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Abstract

In this paper, we give a strong uniqueness characterization theorem for the Chebyshev center of a set of

infinitely many functions relative to a finite-dimensional linear space on a compact Hausdorff space. Addi-

tionally, we derive an alternation theorem for Chebyshev centers relative to a weak Chebyshev space on any

compact set of the real line. Furthermore, we show an intrinsic characterization of those linear spaces where

an alternation theorem holds.
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1. Introduction

Let U be a finite-dimensional linear space of continuous function on a compact Hausdorff space X. The

well-known Haar Unicity Theorem [10] establishes that each continuous function f on X has a unique element

in U that is a best Chebyshev approximation to f from U if and only if U is spanned by a Haar system. For

such linear spaces, the Chebyshev Theorem (on alternation) holds [23]. Jones and Karlovitz [13] showed that

weak Chebyshev systems of continuous functions on a compact interval [a, b] of R completely characterize

those linear spaces U for which each continuous function has at least one best Chebyshev approximation for

which the alternation theorem holds. It is natural to wonder whether such a result remains valid if we replace

[a, b] with an arbitrary compact subset of the real line. Deutsch, Nürnberger, and Singer [6] have provided

an affirmative answer to this question.

On the other hand, we have simultaneous Chebyshev approximation, which deals with the best Chebyshev

approximation to sets of functions. This subject has a long history [9, 12, 24] and can be viewed as a special
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case of vector-valued approximations [21]. Tanimoto [27] derived a necessary and sufficient condition for a

function to be a best simultaneous Chebyshev approximation to a finite set of functions. A best simultaneous

Chebyshev approximation to a certain set ∆ from a subset U in a normed linear space is also known as a

Chebyshev center of ∆ relative to U, or the relative Chebyshev center of ∆ in U. This topic was defined by

Garkavi [8] in the sixties, and lines of research regarding the existence, uniqueness, and characterization of

relative Chebyshev centers have been developed since then (see for instance [2, 5, 18, 26]). Additionally, a

recent survey about relative Chebyshev centers can be found in [1].

The general simultaneous approximation problem can sometimes be reduced to a problem involving the

approximation of two functions. In particular, problems related to alternation in the context of simultaneous

approximation to two functions from Haar spaces and generalizations have been investigated by several au-

thors. Amir and Ziegler [3] established a Chebyshev alternation theorem for the best simultaneous Chebyshev

approximation to two functions from n-unisolvent families of continuous functions on the compact interval

[0, 1]. Fernández and Soriano [7] gave another alternation theorem for the best simultaneous approximation

to two functions from a Haar space of continuous function on a compact interval [a, b], in the particular case

when the approximation criteria is given by a monotone norm with the commutative property. Later, Tani-

moto [28] showed an alternation theorem and a strong uniqueness result for the best simultaneous Chebyshev

approximation to a set of infinitely many functions from a Haar space on a compact interval of R.

The study of strong uniqueness for the relative Chebyshev center in a subset has also been under research

for a long time. Prus and Smarzewski [22] proved that in a uniformly convex space with a modulus of

convexity of power type q ≥ 2, the relative Chebyshev center of a bounded set in a closed convex set is

strongly unique of order q. Furthermore, by using the one-sided Gateaux derivative of the deviation of a

point to a set in a locally convex space, Laurent and Pai [15] gave a strong uniqueness characterization

theorem for the relative center of a bounded set in a linear space involving a seminorm. In a similar context,

results on the relative center in generalized set-suns were given by Luo, Li, and He [17]. Further, Li [16]

showed that the relative Chebyshev center of a bounded set in an so called RS-set in a real Banach space

is strongly unique. Moreover, in case where the set of relative centers is not a singleton, Pai and Indira

[19] showed an intrinsic characterization of the finite-dimensional linear space, called a property (Li). This

characterization yields Hausdorff strong uniqueness of relative Chebyshev centers.

The main goal of our paper is to give a strong uniqueness characterization theorem for the Chebyshev

center of a set of infinitely many functions relative to a finite-dimensional linear space on a compact Hausdorff

space. Moreover, we derive an alternation theorem for Chebyshev centers relative to a weak Chebyshev space

on compact sets on R. This paper extends previous pieces of work in two directions. First, we extend best

Chebyshev approximation results to the more general setting of relative Chebyshev center. Secondly, known
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results of weak Chebyshev systems on compact intervals are extended to any compact set of the real line.

It is well known that the Haar systems (or Chebyshev systems) play an important role in many parts of

analysis, as well as in probability and statistics. However, the weak Chebyshev systems are weaker forms of

Haar systems, capable of encompassing splines. Since classes of spline functions possess many nice structural

properties as well as excellent approximation powers, a myriad of applications in the numerical solution of a

variety of problems in applied mathematics may be found.

The remainder of this paper is organized as follows. Notations, definitions, and essential results needed

are given in Section 2, followed by Section 3 which presents some results about weak Chebyshev systems. In

Section 4, we show characterization, uniqueness, and sign changes of Chebyshev centers of a set of infinitely

many functions. An alternation theorem from a finite-dimensional linear space spanned by a weak Chebyshev

system is studied in Section 5. Additionally, we derive an intrinsic characterization of those linear spaces

where an alternation theorem holds.

2. Preliminaries

Throughout, the symbol X will designate any compact set of a Hausdorff space such that they contain

at least n+ 1 distinct points, where n is a given natural integer. Further, X∗ will stand for the convex hull

of X.

We denote by C(X) the space of continuous real-valued functions on X and we will use ∥ · ∥X to denote

the uniform norm on C(X).

If Y ⊂ X and U is any n-dimensional linear space of C(X), we will write dim(U) for the dimension of U

and designate by UY := {u
Y
: u ∈ U}, where u

Y
denotes the restriction of u to Y .

When the Hausdorff space is R, we will write M instead of X, and use U = U . In this case, M∗ is a

compact interval of R.

Definition 2.1. Let ∆ be a set of uniformly bounded functions in C(X) and let U be an n-dimensional linear

space of C(X). We say that an element u∗ in U is a relative Chebyshev center (r.c.c.) of ∆ in U on X if

sup
f∈∆

∥f − u∗∥X ≤ sup
f∈∆

∥f − u∥X , for all u ∈ U. (2.1)

By ZX,U(∆), we denote the set of all u∗ ∈ U fulfilling (2.1). The number

rX,U(∆) := inf
u∈U

sup
f∈∆

∥f − u∥X

is called the relative Chebyshev radius of ∆ in U. In particular, if ∆ = {f1, f2}, then we say that u∗ in U is

a r.c.c. to f1 and f2 in U on X (or a best simultaneous Chebyshev approximation to f1 and f2 from U on

X) and write ZX,U(f1, f2) and rX,U(f1, f2) instead of ZX,U(∆) and rX,U(∆), respectively.
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It is well known that for f1, f2 ∈ C(X), ZX,U(f1, f2) is a non-empty set [9, Lemma 2.2], although it is not

necessarily unitary. Note that

1

2
∥f1 − f2∥X ≤ inf

u∈U
max{∥f1 − u∥X , ∥f2 − u∥X} = rX,U(f1, f2). (2.2)

In particular, if f = f1 = f2, then ZX,U(f) := ZX,U(f1, f2) is the set of best Chebyshev approximations to

f from U on X.

Let ∆ be a set of uniformly bounded functions in C(X) and set

f−(x) := inf
f∈∆

f(x) and f+(x) := sup
f∈∆

f(x), x ∈ X. (2.3)

It is clear that f− and f+ are not necessarily continuous. For example if ∆ = {fn} where fn(x) = 1− xn on

[0, 1], then f+(x) = sgn(1− x).

Definition 2.2. Let ∆ be a set of uniformly bounded functions in C(X). The set ∆ is said to be complete if

f− ∈ C(X) and f+ ∈ C(X). Moreover, if for each x ∈ X, there exist g, h ∈ ∆ such that f−(x) = g(x) and

f+(x) = h(x), we say that the set ∆ is totally complete.

We observe that if ∆ is a finite set, it is clearly complete.

An immediate consequence of [28, Lemma 1] is the following characterization theorem.

Theorem 2.3. Let ∆ be a complete set of uniformly bounded functions in C(X) and let U ⊂ C(X) be an

n-dimensional linear space. Then u∗ ∈ ZX,U(∆) if and only if u∗ ∈ ZX,U(f−, f+). Further,

rX,U(∆) = sup
f∈∆

∥f − u∗∥X = max{∥f− − u∗∥X , ∥f+ − u∗∥X}. (2.4)

From (2.2) and (2.4) it follows that

1

2
∥f− − f+∥X ≤ rX,U(∆).

On the other hand, it is well known that the number inf
u∈C(X)

sup
f∈∆

∥f − u∥X is called the Chebyshev radius of

∆. When f−+f+
2 ∈ C(X), it is easy to see that the Chebyshev radius of ∆ coincide with 1

2∥f− − f+∥X .

We also have the following characterization result for relative Chebyshev centers that is proved by Tani-

moto in [28, Theorem 2].

Theorem 2.4. Let ∆ be a totally complete set of uniformly bounded functions in C(X) and let U ⊂ C(X)

be an n-dimensional linear space. Assume u∗ ∈ U . The following statements are equivalent:

(a) u∗ ∈ ZX,U(∆),
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(b) there exist λ1, . . . , λs > 0, s distinct elements z1, z2, . . . , zs in X, and s functions h1, . . . , hs ∈ ∆, with

1 ≤ s ≤ n+ 1, such that

(b1) |hi(zi)− u∗(zi)| = rX,U(∆), 1 ≤ i ≤ s,

(b2)
s∑

i=1

λi(hi(zi)− u∗(zi))u(zi) = 0 for all u ∈ U.

Let {g1, . . . , gℓ} be a set of continuous functions defined on X, and let z1, z2, . . . , zℓ be distinct points in

X. We denote the Gramian of the Gram matrix (gj(zi))
ℓ
i,j=1 by

V

g1, . . . , gℓ−1, gℓ

z1, . . . , zℓ−1, zℓ

 := det
(
(gj(zi))

ℓ
i,j=1

)
.

Definition 2.5. A set {u1, . . . , un} of functions in C(X) is called an Haar system (H-system) on X if

V

u1, . . . , un−1, un

z1, . . . , zn−1, zn

 ̸= 0, for every choice of n distinct elements z1, . . . , zn in X.

An n-dimensional linear space U of C(X) is called an Haar space (H-space) on X if there exists a basis

{u1, . . . , un} for U such that it is an H-system on X.

An H-space on M∗ is generally called a Chebyshev space (T-space). For an n-dimensional linear space U

of C(M∗), it is well known that U is a T-space on M∗ if and only if there exists a basis {u1, . . . , un} for U

such that

V

u1, . . . , un−1, un

z1, . . . , zn−1, zn

 > 0, for all z1 < z2 < . . . < zn in M∗. (2.5)

When we have a Haar space, the characterization result Theorem 2.4 can be further strengthened. Pre-

cisely, Tanimoto [28, Theorem 3] proved the following alternation theorem for the relative Chebyshev center.

Theorem 2.6. Let ∆ be a totally complete set of uniformly bounded functions in C(M∗) and let U ⊂ C(M∗)

be an n-dimensional H-space on M∗. Assume u∗ ∈ U . Then the following statements are equivalent:

(a) u∗ ∈ ZM∗,U (∆),

(b) there exist n+ 1 elements z1 < z2 < . . . < zn+1 in M∗, and n+ 1 functions h1, . . . , hn+1 ∈ ∆ such that

(b1) |hi(zi)− u∗(zi)| = rM∗,U (∆), 1 ≤ i ≤ n+ 1,

(b2) hi+1(zi+1)− u∗(zi+1) = (−1)i(hi(zi)− u∗(zi)), 1 ≤ i ≤ n.

Definition 2.7. An n-dimensional H-space U of C(M) is called a strong Haar space (SH-space) on M if

there exists a basis {u1, . . . , un} for U such that (2.5) holds on M . Such a basis is said to be a SH-system

on M .
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We observe that if {u1, . . . , un} is a basis for an n-dimensional linear space of C(M) satisfying (2.5) on

M , then clearly {u1, . . . , un} is a Haar system on M . However, in contrast to the case when X = M∗, not

every Haar system on M satisfies (2.5) on M .

Example 2.8. Let u1(x) = sin(x) and u2(x) = − cos(x). It is easy to verify that {u1, u2} is an H-system on

M =
[
π
4 ,

3π
8

]
∪
[
3π
2 , 7π

4

]
, but it is not a SH-system on M .

For a vector of real numbers ω = (ω1, . . . , ωr), let S
−(ω) be the number of sign changes in the sequence

ω1, . . . , ωr, where zeros are ignored. Note that S−(ω) = 0 when r = 1.

Let f ∈ C(M). We recall that

S−
M (f) := sup

ℓ
{S−((f(z1), . . . , f(zℓ))) : z1 < . . . < zℓ in M}

counts the number of strong sign changes of f on M [25, Definition 2.11]. Of course, if f is either non-negative

or non-positive on M , then we set S−
M (f) = 0.

Definition 2.9. [25, Definition 2.35] A set {u1, . . . , un} of linearly independent functions in C(M) is called

a weak Chebyshev system (WT-system) on M if

V

u1, . . . , un−1, un

z1, . . . , zn−1, zn

 ≥ 0, for all z1 < z2 < . . . < zn in M.

An n-dimensional linear space U of C(M) is called a weak Chebyshev space (WT-space) on M if there exists

a basis {u1, . . . , un} for U such that it is a WT-system on M .

Example 2.10. Let u1(x) = 1 and u2(x) = max{0, x}. Clearly, {u1, u2} is a WT-system on M = [−2,−1]∪

[1, 2], but it is not an H-system on M .

Example 2.11. Let u1(x) = sin(x) and u2(x) = − cos(x). It is easy to verify that {u1, u2} is a WT-system

on [0, π], but it is not a WT-system on [0, 2π].

Good references for a description and more examples of all these systems are [11, 25].

The following two theorems provide characterizations of WT-systems and WT-spaces.

Theorem 2.12. [25, Theorem 2.39] Let {u1, . . . , un} be a set of linearly independent functions in C(M) and

U = span{u1, . . . , un}. If {u1, . . . , un} is a WT-system on M , then

S−
M (u) ≤ n− 1, for all u ∈ U \ {0}. (2.6)

Conversely, if (2.6) holds, then either {u1, . . . , un−1, un}, or {u1, . . . , un−1,−un} is a WT-system on M .
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Below, we present a result by Deutsch, Nürnberger, and Singer that completely characterizes those finite-

dimensional linear spaces on a compact set of R for which an alternation theorem holds.

Theorem 2.13. [6, Theorem 4.1] Let U ⊂ C(M) be an n-dimensional linear space. A necessary and sufficient

conditions that U is an n-dimensional WT-space on M is that for each f ∈ C(M) there exist at least one

u∗ ∈ ZM,U (f), σ ∈ {−1, 1}, and n+ 1 elements z1 < z2 < . . . < zn+1 in M such that

f(zi)− u∗(zi) = σ(−1)n+1−irM,U (f), 1 ≤ i ≤ n+ 1.

The theorem that follows is a ’smoothing’ procedure proved in [20, Proposition 6, p.199] for functions

defined on any compact interval of the real line.

Theorem 2.14. [20, Proposition 6, p.199] Let {u1, . . . , un} ⊂ C(M∗) be a WT-system on M∗. Then, for

every ϵ > 0, there exists a T-system {uϵ
1, . . . , u

ϵ
n} on M∗ such that each uϵ

j uniformly converges as ϵ → 0 to

uj on M∗, 1 ≤ j ≤ n.

3. Extension of weak Chebyshev systems

It is well known that if V ⊂ C(M∗) is an ℓ-dimensional WT-space, then U = VM ⊂ C(M) is an n-

dimensional WT-space where n ≤ ℓ (see for instance [25, Theorem 2.40]). Now suppose that U ⊂ C(M) is

an n-dimensional WT-space on M . We wonder if we could find an n-dimensional WT-space V on M∗ such

that U = VM . The next part will show that this question has an affirmative answer. Lastly, we will prove a

’smoothing’ procedure.

We begin by giving the following notations and an auxiliary lemma.

If M ⊊ M∗, then M∗ \ M is a non-empty open set on M∗. So, there exists a countable collection

{(ai, bi) : i ∈ L}, L ⊂ N, of pairwise disjoint open intervals of R such that

M∗ \M =
⋃
i∈L

(ai, bi).

Definition 3.1. Under the assumptions above, for g ∈ C(M), we will use TM (g) to denote the continuous

extension of g to M∗ given by

TM (g)(x) =

 g(x) if x ∈ M,

g(bi)−g(ai)
bi−ai

(x− ai) + g(ai) if x ∈ (ai, bi), i ∈ L.

We will use TM (g) = g provided that M = M∗.

Lemma 3.2. The operator TM : C(M) → C(M∗) is a linear map such that ∥TM (g)∥M∗ = ∥g∥M and

S−
M∗(TM (g)) = S−

M (g) for all g ∈ C(M).
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Proof. Clearly, TM is a linear map. Let g ∈ C(M). If x ∈ (ai, bi), i ∈ L, then |TM (g)(x)| ≤

max{|g(ai)|, |g(bi)|} ≤ ∥g∥M since ai, bi ∈ M . Therefore, ∥TM (g)∥M∗ = ∥g∥M .

On the other hand, as

{S−((g(z1), . . . , g(zℓ))) : z1 < . . . < zℓ in M}

= {S−((TM (g)(z1), . . . , TM (g)(zℓ))) : z1 < . . . < zℓ in M}

⊂ {S−((TM (g)(z1), . . . , TM (g)(zℓ))) : z1 < . . . < zℓ in M∗},

it follows that S−
M (g) ≤ S−

M∗(TM (g)). Assume ℓ = S−
M (g) < S−

M∗(TM (g)). Hence, there exist z1 < . . . < zℓ+2

in M∗ such that

S−((TM (g)(z1), . . . , TM (g)(zℓ+1), TM (g)(zℓ+2))) = ℓ+ 1, (3.1)

that is, TM (g)(zi)TM (g)(zi+1) < 0, 1 ≤ i ≤ ℓ+ 1. If z1 < . . . < zℓ+2 in M , then

S−((g(z1), . . . , g(zℓ+1), g(zℓ+2))) = ℓ+ 1, (3.2)

which is a contradiction. So, there is 1 ≤ k ≤ ℓ+ 2 that verifies zk /∈ M . Set

m1 = min{k : 1 ≤ k ≤ ℓ+ 2, zk /∈ M}

and let i ∈ L be such that zm1
∈ (ai, bi).

Suppose that m1 = ℓ + 2. We observe that zℓ+1 ≤ ai since zℓ+1 ∈ M . As TM (g)(zm1
) ̸= 0, then either

g(ai) ̸= g(bi), or g(ai) = g(bi) ̸= 0. So, we can find z ∈ {ai, bi} \ {zℓ+1} satisfying TM (g)(zm1
)g(z) > 0 and

z1 < . . . < zℓ+1 < z in M . In fact, we consider three cases. In the first case, we assume TM (g)(zm1)g(ai) > 0.

As TM (g)(zm1)g(zℓ+1) = TM (g)(zm1)TM (g)(zℓ+1) < 0, we have zℓ+1 < ai, and take z = ai. In the second

case, we suppose that TM (g)(zm1
)g(ai) < 0. Since TM (g)(ai) = g(ai), TM (g) is a linear function on the

interval [ai, bi] and zm1
∈ (ai, bi), we get TM (g)(zm1

)g(bi) > 0. Thus, we put z = bi. In the third case,

g(ai) = 0, and therefore, g(bi) ̸= 0. Consequently, TM (g)(zm1)g(bi) > 0 and we consider z = bi. It follows

that sgn(TM (g)(zℓ+1))sgn(TM (g)(z)) < 0, and hence

S−((g(z1), . . . , g(zℓ+1), g(z))) = S−((TM (g)(z1), . . . , TM (g)(zℓ+1), TM (g)(z))) = ℓ+ 1,

which is impossible.

Now assume m1 < ℓ+ 2. Then either zm1+1 < bi or zm1+1 ≥ bi. We consider each case separately.

Case (I): zm1+1 < bi. Since TM (g)(zm1
)TM (g)(zm1+1) < 0, then g(ai) ̸= g(bi), sgn(TM (g)(zm1

)) = sgn(g(ai)),

and sgn(TM (g)(zm1+1)) = sgn(g(bi)). Therefore, zm1−1 < ai < zm1
if m1 > 1, and zm1+1 < bi < zm1+2 if

m1 + 1 < ℓ+ 2. Now, we replace zm1 with ai and zm1+1 with bi.

Case (II): zm1+1 ≥ bi. Proceeding as before, we can take z ∈ {ai, bi}\{zm1+1} such that TM (g)(zm1
)g(z) > 0.
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We replace zm1
with z.

In either case, we have a new set of points z1 < . . . < zℓ+2 in M∗ for which m1 < min{k : 1 ≤ k ≤ ℓ+2, zk /∈

M} and (3.1) holds. Repeating the steps above, we can find z1 < . . . < zℓ+2 in M that satisfies (3.2), which

is another contradiction. This completes the proof.

Theorem 3.3. Let {u1, . . . , un} be a set of linearly independent functions in C(M). Then, {u1, . . . , un} is a

WT-system on M if and only if {TM (u1), . . . , TM (un)} is a WT-system on M∗.

Proof. Assume that {u1, . . . , un} is a WT-system on M . If M = M∗, it is obvious. Now assume M ⊊ M∗.

Since {u1, . . . , un} is a set of linearly independent functions, we have

V

u1, . . . , un−1, un

y1, . . . , yn−1, yn

 ̸= 0, for some y1 < y2 < . . . < yn in M. (3.3)

Therefore,

V

TM (u1), . . . , TM (un−1), TM (un)

y1, . . . , yn−1, yn

 ̸= 0, for some y1 < y2 < . . . < yn in M∗,

and so {TM (u1), . . . , TM (un)} is a set of linearly independent functions. According to Lemma 3.2 and

Theorem 2.12, we have

S−
M∗

 n∑
j=1

cjTM (uj)

 = S−
M∗

TM

 n∑
j=1

cjuj

 = S−
M

 n∑
j=1

cjuj

 ≤ n− 1,

for any real c1, . . . , cn not all 0. From Theorem 2.12 it may be concluded that either {TM (u1), . . . , TM (un)},

or {TM (u1), . . . ,−TM (un)} is a WT-system on M∗. Suppose that {TM (u1), . . . ,−TM (un)} is a WT-system

on M∗ and let z1 < z2 < . . . < zn in M . Since {u1, . . . , un} is a WT-system on M , we obtain

0 ≤ V

TM (u1), . . . , TM (un−1),−TM (un)

z1, . . . , zn−1, zn

 = V

u1, . . . , un−1,−un

z1, . . . , zn−1, zn


= −V

u1, . . . , un−1, un

z1, . . . , zn−1, zn

 ≤ 0.

As z1 < z2 < . . . < zn inM are arbitrary, we deduce that V

u1, . . . , un−1, un

z1, . . . , zn−1, zn

 = 0 for all z1 < z2 < . . . < zn

in M , which is contrary to (3.3).

Conversely, we suppose that {TM (u1), . . . , TM (un)} is a WT-system onM∗. It follows easily that {u1, . . . , un}

is a WT-system on M . This completes the proof.
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The example below shows that Theorem 3.3 does not remain valid for H-systems in general.

Example 3.4. Let M = [a, b] ∪ [c, d] be such that b < c, and we consider that u1(x) = 1, u2(x) = x, and

u3(x) = x2. It is well known that {u1, u2, u3} is an H-system on M . On the other hand, since (bc u1 −

(b + c)u2 + u3)(b) = (bc u1 − (b + c)u2 + u3)(c) = 0, we have TM (bc u1 − (b + c)u2 + u3) = 0 on [b, c]

by Definition 3.1. Thus, Lemma 3.2 becomes bc TM (u1) − (b + c)TM (u2) + TM (u3) = 0 on [b, c], and so

{TM (u1), TM (u2), TM (u3)} is not a T-system on M∗ = [a, d].

The theorem that follows shows that Theorem 2.14 is also valid for functions defined on any compact set

of the real line.

Theorem 3.5. Let {u1, . . . , un} ⊂ C(M) be a WT-system on M . Then, for every ϵ > 0, there exists a

SH-system {uϵ
1, . . . , u

ϵ
n} on M such that each uϵ

j uniformly converges as ϵ → 0 to uj on M , 1 ≤ j ≤ n.

Proof. If M = M∗, the result is obvious by Theorem 2.14. Now assume M ⊊ M∗. Theorem 3.3 implies that

{TM (u1), . . . , TM (un)} is a WT-system on M∗. According to Theorem 2.14, we have that for every ϵ > 0,

there exists a T-system {vϵ1, . . . , vϵn} on M∗ such that each vϵj converges uniformly as ϵ → 0 to TM (uj) on

M∗, 1 ≤ j ≤ n. We write uϵ
j = vϵj

M

∈ C(M), and therefore uϵ
j converges uniformly as ϵ → 0 to uj on M ,

1 ≤ j ≤ n. Finally, as {uϵ
1, . . . , u

ϵ
n} is a SH-system on M , the proof is complete.

4. Characterization and uniqueness of r.c.c. in finite-dimensional linear spaces

In this section, we provide some results concerning the characterization and uniqueness of r.c.c. in a

finite-dimensional linear space.

Some ways of turning the simultaneous Chebyshev approximation problem into an approximation involv-

ing a single function can be found in [5, p.51]. The result below shows another different way.

Lemma 4.1. Let f1, f2 ∈ C(X) and let U be an n-dimensional linear space of C(X). Let Y be the compact

set [0, 1] × X in the product of topological spaces, and let F : Y → R be the continuous function given by

F (t, x) = tf1(x) + (1 − t)f2(x). For u ∈ U, we consider Lu : Y → R defined by Lu(t, x) = u(x) and let

V = {Lu : u ∈ U} be the n-dimensional linear space of C(Y ). Then u∗ ∈ ZX,U(f1, f2) if and only if Lu∗ is

a best Chebyshev approximation to F from V on Y . Further,

rX,U(f1, f2) = inf
u∈U

∥F − Lu∥Y , u ∈ U. (4.1)

Proof. A straightforward computation shows that

max{∥f1 − u∥X , ∥f2 − u∥X} = ∥F − Lu∥Y , u ∈ U. (4.2)

Hence, the lemma immediately follows.
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For a set {u1, . . . , un} of linearly independent functions in C(X) and n distinct elements y1, . . . , yn in X,

for the sake of simplicity, we write

D(y1, . . . , yn) := V

u1, . . . , un−1, un

y1, . . . , yn−1, yn

 .

Lemma 4.2. Under the hypothesis of Lemma 4.1 and s distinct elements (t1, z1), (t2, z2), . . . , (ts, zs) in Y

with 1 ≤ m ≤ s ≤ 2n, let V{(t1,z1),...,(ts,zs)} =
{
Lu

{(t1,z1),...,(ts,zs)}
: u ∈ U

}
. We consider the following

statements:

(a) dim(V{(t1,z1),...,(ts,zs)}) = m,

(b) dim(U{z1,...,zs}) = m,

(c) there exist a basis {u1, . . . , un} of U and a set {zi1 , . . . , zin} of distinct elements of {z1, . . . , zs} such that

D(zi1 , . . . , zin) > 0.

Then, (a) and (b) are equivalent. Moreover, if m = n, then (b) =⇒ (c).

Proof. (a) ⇐⇒ (b) Set P = {(t1, z1), . . . , (ts, zs)} and Q = {z1, . . . , zs}. Note that dim(VP ) = m if and only

if there exists {u1, . . . , um} ⊂ U such that
{
Lu1P

, . . . , LumP

}
is a basis of VP . This condition is equivalent

to the matrix

Am =


u1(z1) u2(z1) · · · um(z1)

u1(z2) u2(z2) · · · um(z2)
...

...
. . .

...

u1(zs) u2(zs) · · · um(zs)


having a full column rank equal to m, or equivalent to

{
u1Q

, . . . , umQ

}
which is a basis of UQ, that is,

dim(UQ) = m.

(b) =⇒ (c) Finally, we suppose that m = n. Then, dim(UQ) = n is equivalent to the matrix An having a

column rank equal to n, that is, An has a row rank equal to n, This condition is equivalent to the existence

of zi1 , . . . , zin such that vectors vr = (u1(zir ), u2(zir ), . . . , un(zir )), 1 ≤ r ≤ n, are linearly independent, or

equivalent to D(zi1 , . . . , zin) ̸= 0. This implies that {u1, . . . , un} is a basis of U and zi1 , . . . , zim are distinct

elements. Finally, if D(zi1 , . . . , zin) < 0, then we can take the basis {u1, . . . ,−un} of U and the proof is

complete.

Let (E, ∥ · ∥) be a normed space and S ⊂ E. Assume that for a given f ∈ E, there exists a best

approximation s∗ to f from S on E, that is, ∥f − s∗∥ ≤ ∥f − s∥ for all s ∈ S. We recall that s∗ is strongly
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unique if there exists γ > 0 depending on f such that

∥f − s∗∥+ γ∥s∗ − s∥ ≤ ∥f − s∥, for all s ∈ S.

This leads to the following generalization of the above concept of strong uniqueness (see for instance [16,

p.43]).

Definition 4.3. Let ∆ be a set of uniformly bounded functions in C(X) and let U ⊂ C(X) be an n-dimensional

linear space. We say that u∗ ∈ ZX,U(∆) is strongly unique if there exists γ > 0 depending on ∆ such that

sup
f∈∆

∥f − u∗∥X + γ∥u∗ − u∥X ≤ sup
f∈∆

∥f − u∥X , for all u ∈ U.

Remark 4.4. The following equality has been proved in [4, p.130] for real-valued function defined on an

interval. However, it is clear that it is also valid for functions defined on any compact set.

sup
f∈∆

∥f − u∥X =

∥∥∥∥∣∣∣∣f− + f+
2

− u

∣∣∣∣+ ∣∣∣∣f− − f+
2

∣∣∣∣∥∥∥∥
X

, u ∈ U,

provided that f−, f+ ∈ C(X). On the other hand, since∣∣∣∣f−(x) + f+(x)

2
− u(x)

∣∣∣∣+ ∣∣∣∣f−(x)− f+(x)

2

∣∣∣∣ = max{|f−(x)− u(x)|, |f+(x)− u(x)|}, x ∈ X, u ∈ U,

we deduce that ∥∥∥∥∣∣∣∣f− + f+
2

− u

∣∣∣∣+ ∣∣∣∣f− − f+
2

∣∣∣∣∥∥∥∥
X

= max{∥f− − u∥X , ∥f+ − u∥X}, u ∈ U.

Below, we show that Theorem 2.4 can be further refined. Further, this theorem extends [14, Theorem

2.4] for relative Chebyshev center problems.

Theorem 4.5. Let ∆ be a complete set of uniformly bounded functions in C(X) and let U ⊂ C(X) be an

n-dimensional linear space. Assume that u∗ ∈ U. The following statements are equivalent:

(a) u∗ ∈ ZX,U(∆) is strongly unique,

(b) there exist λ1, . . . , λs > 0, s distinct elements z1, z2, . . . , zs in X, and s functions h1, . . . , hs ∈ {f−, f+},

with n+ 1 ≤ s ≤ 2n, such that

(b1) |hi(zi)− u∗(zi)| = rX,U(∆), 1 ≤ i ≤ s,

(b2)
s∑

i=1

λi(hi(zi)− u∗(zi))u(zi) = 0 for all u ∈ U,

(b3) dim(U{z1,...,zs}) = n.
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Proof. If rX,U(∆) = 0, the equivalence is obvious since f− = f+ = u∗ by Theorem 2.3. Now we assume that

rX,U(∆) > 0. According to Remark 4.4 and (4.2), we have that

sup
f∈∆

∥f − u∥X = ∥F − Lu∥Y , u ∈ U,

where F (t, x) = tf−(x)+(1−t)f+(x). We can deduce that u∗ ∈ ZX,U(∆) is strongly unique if and only if Lu∗

is the strongly unique best Chebyshev approximation to F from V on Y , or equivalently, by [14, Theorem

2.4], that there exist µ1, . . . , µℓ > 0, ℓ distinct elements (t1, z1), . . . , (tℓ, zℓ) in Y , with n + 1 ≤ ℓ ≤ 2n, such

that

(i) |F (ti, zi)− Lu∗(ti, zi)| = inf
u∈U

∥F − Lu∥Y , 1 ≤ i ≤ ℓ,

(ii)
ℓ∑

i=1

µi(F (ti, zi)− Lu∗(ti, zi))Lu(ti, zi) = 0 for all u ∈ U,

(iii) dim(V{(t1,z1),...,(tℓ,zℓ)}) = n.

Note that n = dim(V{(t1,z1),...,(tℓ,zℓ)}) = dim(U{z1,...,zℓ}) by Lemma 4.2, and Lu(ti, zi) = u(zi), u ∈ U,

1 ≤ i ≤ ℓ. Further, from (2.4) and (4.1), we have that

rX,U(∆) = rX,U(f−, f+) = inf
u∈U

∥F − Lu∥Y . (4.3)

(a) =⇒ (b) Let 1 ≤ i ≤ ℓ. Since 0 ≤ ti ≤ 1, from (i) and (4.3), we deduce that

rX,U(∆) = |ti(f−(zi)− u∗(zi)) + (1− ti)(f+(zi)− u∗(zi))|

≤ ti|f−(zi)− u∗(zi)|+ (1− ti)|f+(zi)− u∗(zi)|

≤ ti∥f− − u∗∥X + (1− ti)∥f+ − u∗∥X ≤ rX,U(f−, f+) = rX,U(∆).

(4.4)

Then, ti|f−(zi)− u∗(zi)| = ti∥f− − u∗∥X , (1− ti)|f+(zi)− u∗(zi)| = (1− ti)∥f+ − u∗∥X and

ti(1− ti)(f+(zi)− u∗(zi))(f−(zi)− u∗(zi)) ≥ 0. (4.5)

If ti = 0, then F (ti, zi) = f+(zi). On the other hand, F (ti, zi) = f−(zi) provided ti = 1. Now, suppose ti /∈

{0, 1}. We conclude from (4.4) that ∥f−−u∗∥X = ∥f+−u∗∥X , hence that |f−(zi)−u∗(zi)| = |f+(zi)−u∗(zi)|,

and finally that f−(zi) = f+(zi) = F (ti, zi) by (4.5). Next, we deduce that

(1) |hi(zi)− u∗(zi)| = rX,U(∆), 1 ≤ i ≤ ℓ,

(2)
ℓ∑

i=1

µi(hi(zi)− u∗(zi))u(zi) = 0 for all u ∈ U,

(3) dim(U{z1,...,zs}) = n,
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By Lemma 4.2, there exist a basis {u1, . . . , un} of U and a set Q = {zi1 , . . . , zin} of distinct elements of

{z1, . . . , zℓ} such that D(zi1 , . . . , zin) > 0.

We claim that

the cardinal of {z1, . . . , zℓ} \Q is at least one. (4.6)

Indeed, on the contrary, we suppose that {z1, . . . , zℓ} \Q = ∅. For 1 ≤ r ≤ n we write

Ir = {zk : 1 ≤ k ≤ ℓ and zk = zir} and βr =
∑
zk∈Ir

µk.

It is easy to verify that βr > 0, 1 ≤ r ≤ n, and {Ir : 1 ≤ r ≤ n} is a collection of pairwise disjoint sets such

that
n⋃

r=1
Ir = {z1, . . . , zℓ}. Hence, (2) shows that

n∑
r=1

βr(hir (zir )− u∗(zir ))uj(zir ) = 0, 1 ≤ j ≤ n.

Since D(zi1 , . . . , zin) > 0, it follows that hir (zir ) − u∗(zir ) = 0, 1 ≤ r ≤ n. Therefore, from (1) we have

rX,U(∆) = 0, which a contradiction.

It only remains to prove that

ℓ can be chosen so that z1, . . . , zℓ are distinct elements and n+ 1 ≤ ℓ. (4.7)

Let s ∈ N be the cardinal of {z1, . . . , zℓ}. From (4.6), we deduce that n+1 ≤ s ≤ ℓ. Let P = {zi1 , . . . , zis} ⊂

{z1, . . . , zℓ} such that P has s distinct elements. By the same argument above, for 1 ≤ k ≤ s we write

Ik = {zt : zt ∈ {z1, . . . , zℓ} and zt = zik} and λk =
∑
zt∈Ik

µt > 0.

Therefore, according to (2), we obtain

s∑
k=1

λk(hik(zik)− u∗(zik))u(zik) = 0, for all u ∈ U.

So, we can see that there exist λ1, . . . , λs > 0, s distinct elements z1, z2, . . . , zs in X, and s functions

h1, . . . , hs ∈ {f−, f+}, with n+ 1 ≤ s ≤ 2n, such that (b1) and (b2) hold.

(b) =⇒ (a) Let ti = 1 if hi = f−, otherwise ti = 0. Hence, F (ti, zi) = hi, 1 ≤ i ≤ s. Therefore, from

(b1)-(b2), it follows that (i) and (ii) hold, and so the proof of (a) is complete.

Remark 4.6. By definition of an n-dimensional H-space U on X, we always have dim(U{z1,...,zn+1}) = n

for every choice of n+ 1 distinct points z1, . . . , zn+1 in X.

When we have an H-space, the characterization Theorem 4.5 can be further strengthened. Additionally,

we derive a property of r.c.c. in terms of sign changes. We recall that this result does not differ much from
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Theorem 2.6. However, it is proved for functions defined on any compact set without the assumption of ∆

to be totally complete.

Theorem 4.7. Let ∆ be a complete set of uniformly bounded functions in C(X) and let U ⊂ C(X) be an

n-dimensional H-space spanned by an H-system {u1, . . . , un} on X. Assume that u∗ ∈ U. The following

statements are equivalent:

(a) u∗ ∈ ZX,U(∆),

(b) there exist σ ∈ {−1, 1}, n + 1 distinct elements z1, z2, . . . , zn+1 in X, and n + 1 functions h1, . . . ,

hn+1 ∈ {f−, f+} such that

hi(zi)− u∗(zi) = σ(−1)n+1−isgn

(
D(z1, . . . , zi−1, zi+1, . . . , zn+1)

D(z1, . . . , zn)

)
rX,U(∆), 1 ≤ i ≤ n+ 1. (4.8)

Proof. If rX,U(∆) = 0, the equivalence is obvious since f− = f+ = u∗. Now, we assume rX,U(∆) > 0.

Following the same argument as Theorem 4.5 with [14, Theorem 2.3] instead of [14, Theorem 2.4], we deduce

that u∗ ∈ ZX,U(∆) if and only if there exist λ1, . . . , λs > 0, s distinct elements z1, z2, . . . , zs in X, and s

functions h1, . . . , hs ∈ {f−, f+}, with 1 ≤ s ≤ n+ 1, such that

(i) |hi(zi)− u∗(zi)| = rX,U(∆), 1 ≤ i ≤ s,

(ii)
s∑

i=1

λi(hi(zi)− u∗(zi))u(zi) = 0 for all u ∈ U.

We claim that s = n+ 1.

In fact, on the contrary, we assume s ≤ n. Since {u1, . . . , un} is an H-system on X, there exists u ∈ U such

that u(zi) = hi(zi)− u∗(zi), 1 ≤ i ≤ s. Hence, (ii) leads to

0 =

s∑
i=1

λi(hi(zi)− u∗(zi))
2 = rX,U(∆)2

s∑
i=1

λi,

which is a contradiction.

Note that D(z1, . . . , zn) ̸= 0 and the condition (ii) is equivalent to

n∑
i=1

λi(hi(zi)− u∗(zi))

−λn+1(hn+1(zn+1)− u∗(zn+1))
uj(zi) = uj(zn+1), 1 ≤ j ≤ n. (4.9)

(a) =⇒ (b) From (4.9) and by using Cramer’s Rule, it follows that

λi(hi(zi)− u∗(zi))

−λn+1(hn+1(zn+1)− u∗(zn+1))
=

D(z1, . . . , zi−1, zn+1, zi+1, . . . , zn)

D(z1, . . . , zn)

= (−1)n−iD(z1, . . . , zi−1, zi+1, . . . , zn+1)

D(z1, . . . , zn)
,

(4.10)
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1 ≤ i ≤ n. Since (i) holds, by taking modulus to both sides of (4.10) we get

λi

λn+1
= sgn

(
D(z1, . . . , zi−1, zi+1, . . . , zn+1)

D(z1, . . . , zn)

)
D(z1, . . . , zi−1, zi+1, . . . , zn+1)

D(z1, . . . , zn)
,

1 ≤ i ≤ n. This proves (b) with σ = sgn(hn+1(zn+1)− u∗(zn+1)).

(b) =⇒ (a) Clearly, (i) is obvious. The proof is completed by showing that (ii) holds, or equivalently, that

(4.9) holds. Let λn+1 = 1 and λi =
∣∣∣D(z1,...,zi−1,zi+1,...,zn+1)

D(z1,...,zn)

∣∣∣, 1 ≤ i ≤ n. Since λi > 0, according to (b) we

obtain
λi(hi(zi)− u∗(zi))

−λn+1(hn+1(zn+1)− u∗(zn+1))
=

D(z1, . . . , zi−1, zn+1, zi+1, . . . , zn)

D(z1, . . . , zn)
,

1 ≤ i ≤ n. Hence,
(

λ1(h1(z1)−u∗(z1))
−λn+1(hn+1(zn+1)−u∗(zn+1))

, . . . , λn(hn(zn)−u∗(zn))
−λn+1(hn+1(zn+1)−u∗(zn+1))

)
is the unique solution of the

system of n linear equations given by

n∑
i=1

ciuj(zi) = uj(zn+1), 1 ≤ j ≤ n.

So (4.9) is true, and the proof is complete.

Remark 4.8. It is evident that if we have M instead of X, then the distinct elements z1, . . . , zn in M given

in Theorem 4.7 can be chosen so that z1 < z2 < . . . < zn+1.

Corollary 4.9. Let ∆ be a complete set of uniformly bounded functions in C(X) and let U ⊂ C(X) be an

n-dimensional H-space on X spanned by an H-system {u1, . . . , un}. Assume that 1
2∥f− − f+∥X < rX,U(∆)

and u∗ ∈ ZX,U(∆). Then, there exist σ ∈ {−1, 1}, n + 1 distinct elements z1, z2, . . . , zn+1 in X, and n + 1

functions h1, . . . , hn+1 ∈ {f−, f+} such that item (b) of Theorem 4.7 is satisfied and

sgn

((
f− + f+

2
− u∗

)
(zi)

)
= σ(−1)n+1−isgn

(
D(z1, . . . , zi−1, zi+1, . . . , zn+1)

D(z1, . . . , zn)

)
, (4.11)

1 ≤ i ≤ n+ 1.

Proof. By Theorem 4.7, there exist σ ∈ {−1, 1}, n + 1 distinct elements z1, z2, . . . , zn+1 in X, and n + 1

functions h1, . . . , hn+1 ∈ {f−, f+} such that item (b) of Theorem 4.7 is satisfied.

If hi = f−, by hypothesis we have 1
2 |f−(zi)− f+(zi)| ≤ 1

2∥f− − f+∥X < rX,U(∆) = |f−(zi)− u∗(zi)|, and so

sgn (hi(zi)− u∗(zi)) = sgn (f−(zi)− u∗(zi)) = sgn

((
f− + f+

2

)
(zi)− u∗(zi)

)
, (4.12)

where the last equality uses the fact that sgn(b) = sgn(b−a) provide |a| < |b|. Similarly, if hi = f+ we obtain

1
2 |f+(zi)− f−(zi)| < |f+(zi) − u∗(zi)|, and hence (4.12) is also true. Therefore, (4.11) holds by (4.12), and

(b) of Theorem 4.7.

The following is an example where 1
2∥f− − f+∥X < rX,U(∆).

16



Example 4.10. Let X =
[
1
4 , 1

]
, u(x) = x, and let ∆ be any complete set of uniformly bounded functions in

C(X) such that f−(x) = 0 and f+(x) = 1. Assume that U ⊂ C(X) is the 1-dimensional linear space spanned

by {u}. It is easy to check that {u} is an H-system on X, 1
2∥f−−f+∥X = 1

2 , and rX,U(∆) = 4
5 . Furthermore,

u∗(x) = 4
5x, h1 = f+, h2 = f−, z1 = 1

4 , and z2 = 1 verify (4.8) and (4.11) with σ = 1.

Corollary 4.11. Let U ⊂ C(X) be an n-dimensional H-space on X. Then, for each complete set ∆ of

uniformly bounded functions in C(X), u∗ ∈ ZX,U(∆) is strongly unique.

Proof. It follows immediately from the proof of Theorem 4.7, Remark 4.6, and Theorem 4.5.

Corollary 4.12. Let U ⊂ C(X) be an n-dimensional linear space. The following statements are equivalent:

(a) U is an n-dimensional H-space on X,

(b) For each complete set ∆ of uniformly bounded functions in C(X), there exists a unique u∗ ∈ ZX,U(∆).

Proof. (a) =⇒ (b) It is obvious from Corollary 4.11.

(b) =⇒ (a) Follows from [14, Theorem 4.1] by taking ∆ = {f}.

In the specific case where U is a finite-dimensional SH-space, Theorem 4.7 can be further refined into a

final and more geometric form. Moreover, it shows that Theorem 2.6 is also valid for functions defined on

any compact set of the real line.

Theorem 4.13. Let ∆ be a complete set of uniformly bounded functions in C(M) and let U ⊂ C(M) be an

n-dimensional SH-space on M . Assume that u∗ ∈ U . The following statements are equivalent:

(a) u∗ ∈ ZM,U (∆),

(b) there exist σ ∈ {−1, 1}, n+ 1 elements z1 < z2 < . . . < zn+1 in M , and n+ 1 functions h1, . . . , hn+1 ∈

{f−, f+} such that

hi(zi)− u∗(zi) = σ(−1)n+1−irM,U (∆), 1 ≤ i ≤ n+ 1. (4.13)

Proof. Assume that U is spanned by a SH-system on M , {u1, . . . , un}. If rM,U (∆) = 0, the equivalence is

obvious. Now, we assume rM,U (∆) > 0. Since U is an H-space, according to Theorem 4.7 and Remark 4.8,

we have u∗ ∈ ZM,U (f−, f+) if and only if there exist σ ∈ {−1, 1}, n+1 distinct elements z1 < z2 < . . . < zn+1

in M , and n+ 1 functions h1, . . . , hn+1 ∈ {f−, f+}, such that

hi(zi)− u∗(zi) = σ(−1)n+1−isgn

(
D(z1, . . . , zi−1, zi+1, . . . , zn+1)

D(z1, . . . , zn)

)
rM,U (∆), 1 ≤ i ≤ n+ 1.

As z1 < z2 < . . . < zn < zn+1 and {u1, . . . , un} is a SH-system on M , we obtain

D(z1, . . . , zn) > 0 and D(z1, . . . , zi−1, zi+1, . . . , zn+1) > 0, 1 ≤ i ≤ n+ 1. (4.14)
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This completes the proof.

Corollary 4.14. Let ∆ be a complete set of uniformly bounded functions in C(M), and let U ⊂ C(M) be an

n-dimensional SH-space on M . Assume that 1
2∥f−−f+∥M < rM,U (∆) and u∗ ∈ ZM,U (∆). Then, there exist

σ ∈ {−1, 1}, n + 1 elements z1 < z2 < . . . < zn+1 in M , and n + 1 functions h1, . . . , hn+1 ∈ {f−, f+} such

that item (b) of Theorem 4.13 is satisfied and(
f− + f+

2
− u∗

)
(zi)

(
f− + f+

2
− u∗

)
(zi+1) < 0, 1 ≤ i ≤ n. (4.15)

Proof. Assume that U is spanned by a SH-system on M , {u1, . . . , un}. Then, it is an immediate consequence

of (4.11), (4.14), and Theorem 4.13.

5. An alternation theorem for r.c.c. from WT-systems

In this section, we derive an alternation theorem for Chebyshev centers relative to WT-spaces on compact

sets on R. First, we establish a relationship between the convergence of a net of n-dimensional linear spaces

and the convergence of any net of Cheyshev centers relative to such linear spaces.

Theorem 5.1. Let {uϵ
1, . . . , u

ϵ
n} be sets of linearly independent functions in C(X), 0 ≤ ϵ < 1. Assume ∆

is a complete set of uniformly bounded functions in C(X), Uϵ = span{uϵ
1, . . . , u

ϵ
n} and each uϵ

j converges

uniformly as ϵ → 0 to u0
j on X, 1 ≤ j ≤ n. Then, for any choice of u∗

ϵ ∈ ZX,Uϵ(∆), there exist a subnet of

{u∗
ϵ}, which we denote, for convenience, using the same index ϵ, and u∗ ∈ U0 such that

(a) lim
ϵ→0

∥u∗
ϵ − u∗∥X = 0,

(b) lim
ϵ→0

rX,Uϵ
(∆) = rX,U0

(∆),

(c) u∗ ∈ ZX,U0
(∆).

Proof. Let u∗
ϵ ∈ ZX,Uϵ

(∆), 0 < ϵ < 1, and suppose that u∗
ϵ =

n∑
j=1

cϵju
ϵ
j . We observe that

∥u∗
ϵ∥X ≤ ∥f+ − u∗

ϵ∥X + ∥f+∥X ≤ rX,Uϵ(∆) + ∥f+∥X ≤ 2 sup
f∈∆

∥f∥X < ∞.

Since {u0
1, . . . , u

0
n} is a set of linearly independent functions in C(X), there are z1 < . . . < zn in X for which

V

u0
1, . . . , u

0
n−1, u

0
n

z1, . . . , zn−1, zn

 ̸= 0.

By hypothesis, there exist 0 < ϵ0 < 1 and κ0 > 0 such that ∥u∗
ϵ∥X ≤ κ0 and |uϵ

j(zi)| ≤ κ0 for all 0 < ϵ < ϵ0

and 1 ≤ i, j ≤ n. As the determinant is a continuous function, we also deduce that

lim
ϵ→0

∣∣∣∣∣∣V
uϵ

1, . . . , u
ϵ
n−1, u

ϵ
n

z1, . . . , zn−1, zn

∣∣∣∣∣∣ =
∣∣∣∣∣∣V

u0
1, . . . , u

0
n−1, u

0
n

z1, . . . , zn−1, zn

∣∣∣∣∣∣ > 0.
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So, there exist 0 < ϵ1 < 1 and κ1 > 0 for which κ1 <

∣∣∣∣∣∣V
uϵ

1, . . . , u
ϵ
n−1, u

ϵ
n

z1, . . . , zn−1, zn

∣∣∣∣∣∣ for all 0 < ϵ < ϵ1. By using

Cramer’s Rule we have

|cϵj | ≤
κn
0n!

κ1
, 0 < ϵ < min{ϵ0, ϵ1}, 1 ≤ j ≤ n. (5.1)

Now, we can find a subnet, which we denote other time with the same index ϵ, such that cϵj converges as

ϵ → 0 to cj ∈ R, 1 ≤ j ≤ n. Set u∗ =
n∑

j=1

ciu
0
j ∈ U0. We observe that

∥u∗
ϵ − u∗∥X ≤ κn

0n!

κ1

n∑
j=1

∥uϵ
j − u0

j∥X +

n∑
j=1

|cϵj − cj |∥u0
j∥X , 0 < ϵ < min{ϵ0, ϵ1}.

Thus, (a) holds.

Since sup
f∈∆

∥f − u∗∥X ≤ sup
f∈∆

∥f − u∗
ϵ∥X + ∥u∗

ϵ − u∗∥X = rX,Uϵ
(∆) + ∥u∗

ϵ − u∗∥X , (a) shows that

sup
f∈∆

∥f − u∗∥X ≤ lim inf
ϵ→0

rX,Uϵ
(∆). (5.2)

On the other hand, as rX,Uϵ
(∆) = sup

f∈∆
∥f − u∗

ϵ∥X ≤ sup
f∈∆

∥f − u∗∥X + ∥u∗
ϵ − u∗∥X , we have

lim sup
ϵ→0

rX,Uϵ
(∆) ≤ sup

f∈∆
∥f − u∗∥X . (5.3)

Therefore, (5.2) and (5.3) lead to

lim
ϵ→0

rX,Uϵ
(∆) = sup

f∈∆
∥f − u∗∥X (5.4)

Now, let d = (d1, . . . , dn) ∈ Rn and uϵ =
n∑

j=1

dju
ϵ
j . It is clear that lim

ϵ→0
rX,Uϵ(∆) ≤ sup

f∈∆

∥∥∥∥∥f −
n∑

j=1

dju
0
j

∥∥∥∥∥
X

. As

d is arbitrary, it follows that lim
ϵ→0

rX,Uϵ
(∆) ≤ rX,U0

(∆). Finally (5.4) proves (b) and (c).

Below, we provide our main result of this section. Precisely, we extend an alternation theorem (Theorem

2.13) in the best approximation from weak Chebyshev spaces on a compact set of R to those in relative

Chebyshev center on any compact set of R. Furthermore, we give an intrinsic characterization of those linear

spaces for which an alternation theorem holds. Additionally, this result is further considered to include the

Chebyshev center relative to SH-spaces (Theorem 4.13).

Theorem 5.2. Let U ⊂ C(M) be an n-dimensional linear space. The following statements are equivalent:

(a) U is an n-dimensional WT-space on M ;

(b) for each complete set ∆ of uniformly bounded functions in C(M), either 1
2∥f− − f+∥M = rM,U (∆), or

there exist at least one u∗ ∈ ZM,U (∆), σ ∈ {−1, 1}, n+1 elements z1 < z2 < . . . < zn+1 in M , and n+1

functions h1, . . . , hn+1 ∈ {f−, f+} such that

hi(zi)− u∗(zi) = σ(−1)n+1−irM,U (∆), 1 ≤ i ≤ n+ 1.
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Moreover, in the case 1
2∥f− − f+∥M < rM,U (∆),(
f− + f+

2
− u∗

)
(zi)

(
f− + f+

2
− u∗

)
(zi+1) < 0, 1 ≤ i ≤ n. (5.5)

Proof. Assume that U is an n-dimensional WT-space onM , and let ∆ be a complete set of uniformly bounded

functions in C(M). Suppose that 1
2∥f− − f+∥M < rM,U (∆) and let 0 < ϵ < 1. By hypothesis, there exists a

basis {u1, . . . , un} of U that is WT-system on M . From Theorem 3.5, we see that for every 0 < ϵ < 1, there

exists a SH-system {uϵ
1, . . . , u

ϵ
n} on M such that

lim
ϵ→0

∥uϵ
j − uj∥M = 0, 1 ≤ j ≤ n.

Let Uϵ = span{uϵ
1, . . . , u

ϵ
n}. By Corollary 4.12, it follows that ZM,Uϵ

(∆) is a unitary set. We put ZM,Uϵ
(∆) =

{u∗
ϵ}. According to Theorem 5.1, there exists u∗ ∈ ZM,U (∆) verifying

lim
ϵ→0

∥u∗
ϵ − u∗∥M = 0 and lim

ϵ→0
rM,Uϵ

(∆) = rM,U (∆). (5.6)

Hence, there is 0 < ϵ0 < 1 such that 1
2∥f− − f+∥M < rM,Uϵ

(∆) for all 0 < ϵ < ϵ0. Let 0 < ϵ < ϵ0. Corollary

4.14 implies that there exist σϵ ∈ {−1, 1}, n + 1 elements z1(ϵ) < z2(ϵ) < . . . < zn+1(ϵ) in M and n + 1

functions hϵ
1, . . . , h

ϵ
n+1 ∈ {f−, f+} such that

hϵ
i(zi(ϵ))− u∗

ϵ (zi(ϵ)) = σϵ(−1)n+1−irM,Uϵ
(∆), 1 ≤ i ≤ n+ 1, (5.7)

and (
f− + f+

2
− u∗

ϵ

)
(zi(ϵ))

(
f− + f+

2
− u∗

ϵ

)
(zi+1(ϵ)) < 0, (5.8)

1 ≤ i ≤ n. Since the net {(z1(ϵ), . . . , zn(ϵ)) : 0 < ϵ < ϵ0} is contained in Mn, we can find a subnet, which we

denote other time with the same index ϵ, such that

(a) zi(ϵ) converges as ϵ → 0 to zi ∈ M , 1 ≤ i ≤ n+ 1,

(b) zi ≤ zi+1, 1 ≤ i ≤ n,

(c) σϵ = σ ∈ {−1, 1}, for all ϵ,

(d) hϵ
i = hi ∈ {f−, f+}, for all ϵ.

Therefore, according to (5.6)-(5.8) we obtain

hi(zi)− u∗(zi) = σ(−1)n+1−irM,U (∆), 1 ≤ i ≤ n+ 1,

and (
f− + f+

2
− u∗

)
(zi)

(
f− + f+

2
− u∗

)
(zi+1) ≤ 0, 1 ≤ i ≤ n.
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We claim that

u∗(zi) ̸=
(
f− + f+

2

)
(zi), 1 ≤ i ≤ n+ 1.

Indeed, on the contrary, we suppose that there is 1 ≤ i ≤ n + 1 such that u∗(zi) =
(

f−+f+
2

)
(zi), then

1
2∥f− − f+∥M < rM,U (∆) = 1

2 |(f− − f+)(zi)|, which is a contradiction.

Consequently, we deduce that (5.5) holds and zi < zi+1.

Reciprocally, suppose (b) holds, and let f ∈ C(M). If f /∈ U , then the complete set ∆ = {f} satisfies

1
2∥f−−f+∥M = 0 < rM,U (∆) = rM,U (f). By assumption there exist at least one u∗ ∈ ZM,U (f), σ ∈ {−1, 1},

and n+ 1 elements z1 < z2 < . . . < zn+1 in M , such that

f(zi)− u∗(zi) = σ(−1)n+1−irM,U (f), 1 ≤ i ≤ n+ 1.

On the other hand, if f ∈ U , such a result remains valid. Therefore, Theorem 2.13 implies that U is an

n-dimensional WT-space on M . This completes the proof.

As an immediate consequence of Lemma 3.2 and Theorems 3.3 and 5.2, we obtain the following result

about interpolation of relative Chebyshev centers.

Corollary 5.3. Let ∆ be a complete set of uniformly bounded functions in C(M) and let U ⊂ C(M) be

an n-dimensional WT-space on M . Then, either 1
2∥f− − f+∥M = rM.U (∆), or there exist at least one

u∗ ∈ ZM,U (∆) and n elements z1 < z2 < . . . < zn in M∗ such that TM (u∗) interpolates to TM

(
f−+f+

2

)
at

z1, . . . , zn. In particular, u∗ interpolates to f−+f+
2 at z1, . . . , zn in M provided that M is a compact interval

of R.

For each g ∈ C(X), let

FX(g) := {z ∈ X : |g(z)| = ∥g∥X} ≠ ∅.

When the relative Chebyshev radius and the Chebyshev radius coincide, we can derive a result similar

to [3, Corollary 1.8]. Before we remember that, z ∈ X is a straddle point of (u∗; f−, f+)-approximation if

f+(z)− u∗(z) = u∗(z)− f−(z) = rX,U(∆).

Theorem 5.4. Let ∆ be a complete set of uniformly bounded functions in C(X) and let U ⊂ C(X) be an

n-dimensional linear space. The following statements are equivalent:

(a) 1
2∥f− − f+∥X = rX,U(∆),

(b) for each u∗ ∈ ZX,U(∆) and z ∈ FX(f− − f+), z is a straddle point of (u∗; f−, f+)-approximation.

In this case, we have u∗(z) =
(

f−+f+
2

)
(z) for each u∗ ∈ ZX,U(∆) and z ∈ FX(f− − f+). Further, if

z1, z2, . . . , zn in FX(f− − f+) are distinct elements, then for each u∗ ∈ ZX,U(∆), u∗ interpolates to f−+f+
2

at z1, . . . , zn in X.
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Proof. (b) =⇒ (a) is obvious.

(a) =⇒ (b) Let u∗ ∈ ZX,U(∆) and let z ∈ FX(f− − f+), that is, |f−(z) − f+(z)| = ∥f− − f+∥X . Let

h ∈ {f−, f+} be such that |h(z) − u∗(z)| = max{|f−(z) − u∗(z)|, |f+(z) − u∗(z)|}. From (a) and (2.4), it

follows that

1

2
∥f− − f+∥X =

1

2
|f−(z)− f+(z)| ≤

1

2
(|f−(z)− u∗(z)|+ |f+(z)− u∗(z)|) ≤ |h(z)− u∗(z)|

≤ ∥h− u∗∥X ≤ rX,U(f−, f+) = rX,U(∆) =
1

2
∥f− − f+∥X .

Therefore, 1
2 |f−(z)− f+(z)| = rX,U(∆). Further, as 1

2 (|f−(z)− u∗(z)|+ |f+(z)− u∗(z)|) = |h(z)− u∗(z)|, we

get 1
2 |f−(z)− f+(z)| = |f−(z)− u∗(z)| = |f+(z)− u∗(z)|, and so, u∗(z) =

(
f−+f+

2

)
(z). This proves (b).

The rest of the proof follows easily.
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