EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR THE
FRACTIONAL NONLINEAR SCHRODINGER EQUATION

SALOMON ALARCON*, ANTONELLA RITORTO', AND ANALIA SILVA#

ABSTRACT. We consider the equation
e2(=A)*u+V(z)u— f(u) =0 in RV,

where s € (0,1), p € (1, %f%i), N > 2s, f(u) = |ulP~lu, V € L>°[RN)
is such that infzny V' > 0 and € > 0 is small. We study the existence and
nonexistence of solutions concentrating at a local minimum point of V as
e — 0 without using any symmetry assumption on V. First, we prove that
certain type of positive solutions exhibiting peaks do not exist. Then, we
study the existence of sign-changing solutions under a suitable configuration of
positive and negative peaks. To guarantee the existence, we cannot neglect the
interaction between peaks. In particular, by using a minimization argument,
we found solutions exhibiting peaks at the vertices of a 2¢-regular polygon,
such that two adjacent peaks have alternate sign.

1. INTRODUCTION

This paper concerns the existence and nonexistence of solutions of the equation

2 (=AYu+V(z)u— f(u) =0 in RV, (1.1)
where s € (0,1), p € (1, {222), N > 2s, f(t) = [t[~'t, V € L®(R") is such that

infgv V > 0 and € > 0 is small.

It is well known that solutions of (1.1) give rise to standing wave solutions of the
fractional nonlinear Schrédinger equation
000 < A Y UG~ Y I BY x (0 400),  (12)
in the semiclassical limit regime 0 < £ := h < 1, where U(x) is a bounded potential
and 7/ denotes the usual Planck constant. Indeed, standing wave solutions of (1.2)
have the form t(z,t) = u(z)e ¢ , where u represents a real-valued function. Then,
by letting V(x) = U(z) + E, one can check directly that such a function u actually
satisfies (1.1). Equation (1.2) was introduced by Laskin [16, 17] as a generalization of
the classical nonlinear Schrodinger equation where the Brownian trajectories that
lead to standard quantum and statistical mechanics are replaced by the Lévy paths,
leading to fractional quantum and fractional statistical mechanics.

Throughout this paper,.” (RY) denotes the Schwartz space of rapidly decaying
smooth functions, and the fractional Laplacian (—A)?®, with s € (0,1), of a function
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9 € 7 (RV) is defined by
(A I(z) == F (|2 F(0)(€)) (z) for all z € RY,

where .# denotes the Fourier transform and .# ! its inverse. Additionally, we
consider the space H*(RY), which is a natural space for solutions of (1.1) and can
be defined in an alternative way via a Fourier transform by the space

@)= {0 2R [ (41627 @) OPdE < oo

Continuing the route initiated by Amick and Toland [0] for the study of the
Benjamin-Ono equation, i.e., the equation (1.1) with s = % and N = 1, Frank
and Lenzmann [13] studied the uniqueness of positive solutions to (1.1) in the one-
dimensional case for s € (0, 1), obtaining nondegeneracy and symmetry of solutions.
These results were extended to N > 1 in [14], getting also uniqueness for radial
solutions and nondegeneracy of ground state solutions.

In recent years, many results regarding concentration phenomena for equation
(1.1) and its generalizations, under the assumption that infry V' > 0 have arisen;
see, for instance, [2, 3,4,5,9,8, 11,24, 23,1, 19, 18, 25]. In particular, in [19, 23, 25],
multipeak solutions were studied by overlapping single peaks that are sufficiently
far away from one another so that one peak has no effect on the other peaks in the
areas where decay occurs, avoiding interactions between peaks.

Here, we are interested in the case where the interactions between peaks are
essential to building clustered solutions to (1.1) with peaks approaching at the
same point. For the case s = 1, this phenomenon was studied for the first time
by Kang and Wei [15]. For the case s € (0,1), we know of two works motivat-
ing our study. Positive solutions exhibiting ¢ interacting peaks concentrating at
a local maximum of the potential V' were found by D4vila, Del Pino and Wei [9]
through the Lyapunov-Schmidt variational reduction. Also via a reduction scheme,
Long and Lv [18] constructed sign-changing solutions concentrating at a local min-
imum of the potential V under certain symmetry assumptionson V. To the best of
our knowledge, those results seem to be the only ones available concerning sign-
changing solutions to (1.1) in the literature. In both works, the interaction between
the peaks cannot be neglected, since it plays a key role in guaranteeing the exis-
tence of the solutions. Our main goals here are to study situations other than those
in [9, 18]. Specifically, without any symmetry assumption regarding the potential
V', we first prove the nonexistence of positive solutions of such type concentrat-
ing at a local minimum of the potential V' and then, we study the issue of the
existence of sign-changing solutions exhibiting interacting peaks under appropriate
configurations of concentration points.

To put our results into perspective, inthe remainder of this paper, we consider
the function w € H*(R") being the unique positive radial ground state solution of
(=AYw+w— f(w) =0 inRY,
w(0) = maxpy w, w(z) — 0 as || — oo,

in which f(t) = [t|[P" 1t forallt € R, s € (0,1),p € (17 %gz) and N > 2s, see [11].
It is known that such function w satisfies

14+ 0(1
w(z) = W, where 0(1) — 0 as |z] — oo for some vy > 0. (1.3)
We point out that this asymptotic behavior differs from the one known for the
solutions to the problem in the case s = 1, which is an exponential type decay
at infinity. Despite this fact, the decay (1.3) will be sufficient and crucial for

our purposes although we will have to do accurate estimates to cover the case



FRACTIONAL NONLINEAR SCHRODINGER EQUATION 3

0 < s < 1. Observe that for afixed A > 0, the function wy (y) := AT w()\i y), y RN,
belongs to H2+1(RYN) N C>°(RY) and verifies

(A9 4+ — f(¥) =0 inRY, (1.4)

which, after a suitable change in variables, can be seen as a limit equation coming
from (1.1). Moreover, the function wy, among all nontrivial solutions of (1.4) in
H?3(RY), yields the lowest possible value for the energy functional I defined by

— 1
I,(v) := f/ (v(=A)v 4+ M) dx — F(v)dx, (1.5)
2 RN RN
where F(t)= fot f(s)ds= ﬁ [t|P+! and ¥is the s-harmonic extension of v € H2*(R™N).
Then, it is reasonable to search for solutions u. of (1.1) that resemble
Z’

) S () £ 3 (o (52)), eew

j=1 J=0+1
for a suitable choice of points Q1,...,Q, close to the same critical point Q¢ of V,
and certain positive values Ag, ..., \s close to V(Qp). We are interested in the case

in which Qg is a local minimum point of V. To continue, we introduce the function

wf?(m) = )\ﬁw@\%(m ; Q)>7 r e RN,

where @ € RN and A > 0; and proper hypotheses regarding the potential V.
Specifically, we assume that the following statements hold:
(Vo) V € C(RN)N L=®(RY) and infgy V > 0.
(V1) There exists an open bounded smooth domain 2 C RY such that V € C*(12),
and there exists unique Qg € Q such that V(Qo) = infq V < infgq V.
(V2) There exists an open set w compactly contained in € such that Qo € int(w),

V € C1H9(w) for some 0 € (0,1), and V(Q) > V(Qo) for all Q € w\ {Qo}-

Our first main result concerns the nonexistence of certain positive solutions concen-
trating near a nondegenerate local minimum point of the potential V. Of course,
this result extends to the fractional case the Theorem 1.2 in [15].

Theorem 1.1. Let N > 1 and £ € N, £ > 1. Assume that V satisfies (Vo), (V1),
and (Va), with V € C?(w) and det(D?V (Qq)) # 0. Then, there exists g9 > 0 such
that for each 0 < € < g¢ the equation (1.1) cannot have a positive solution ue of
the form

l
ue(z) = Zw% (z) + pe(x), zeRY, (1.6)
i=1
where p. € H**(RYN), with o. — 0 on H*(RN) ase — 0, and X\; = V(Q3) — V(Qo)
ass—>0andn;£in|@§—@§| > ¥ and Q — Qo ase — 0 foralli=1,...,¢,
i#]

where 0 < p < N + 2s — 2 is given.

The proof is based on the study of a system of equations on the locations of the
peaks, joint an argument that relies on the nondegeneracy of the potential V' on Q.

Our second main result refers to the existence of sign-changing solutions that
exhibit the same numbers of positive and negative peaks.

Theorem 1.2. Let N > 1 and ¢ € N. Assume that (Vy), (V1) and (V) hold. Then,
for each & > 0 that is sufficiently small, there exists a solution u. € H?*(RYN) of
(1.1) such that

¢ 2¢
ue(w) =Y wi (@) = Y wi (@) +pe(w), RV, (1.7)
=1 i=0+1
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where . € H**(RN), with . — 0 on H*(RY) as e — 0, and \; = V(Q%), with
Q5 € w satisfying V(Q5) — V(Qo) as € — 0. Moreover,
rggl|@f—@ﬂ > N and Q; > Qo ase >0 foralli=1,...,2¢L.
The proof is based on a minimization argument where the term representing
the interaction between peaks has to be precisely controlled, which is achieved
by choosing a configuration of points involving the same number of positive and
negative peaks. This argument can be compared with that of maximizing in [9,
Theorem 3] related the existence of multiple positive peaks concentrating at a local
maximum point of V' verifying min;; }Qf — Q§| > ¢*7°. Unlike that work, here we
need more precise estimates of the error (compare our Lemma 4.1 with [9, Lemma
6.4]) and to choose the concentration points in a very special form in order to obtain
the desired effect of the interaction between peaks. Namely, in our argument we
will choose points ()5 as the vertices of a regular 2¢-polygon centered at () so that
two adjacent peaks have alternate sign, and then will obtain the desired result. We
emphasize that, under our hypothesis, such configuration of concentration points
has not been considered in the literature yet, even for the case s = 1.

The proof of our theorems relies on the Lyapunov-Schmidt reduction method,
which reduces the problem of finding u € H?*(RY) that solves (1.1) to finding a

critical point q € RV, where q = e 71(Q1,...,Q;) € RN’ for a function denoted
by J.. This latter comes from evaluating the energy functional J. associated to
(=AY 9+ V(ex)d — f(¥) =0 inRY (1.8)

in a constructed solution that, roughly speaking, has the form v () =W (z) + ¢< (),
reRY, with W(z)= Zle lefi (ex), 1 €{—1,1}, and theremainder term ¢, isof
lower order than W respect to a weighted norm. It is, 7.(q) := J.(v¢), where v, is
the s-harmonic extension of v, for suitable points q € RV*. Since finding critical
points of J. becomes equivalent to finding solutions to (1.8), our effort shall be fully
devoted to finding critical points of J.. The reduction procedure used here was
devised in [10] for a slightly supercritical problem involving the Laplacian operator
in a bounded domain; see also [12, 21, 22, 2(], among other pioneering works in
which this method has been implemented for the case s = 1. Additionally, we also
consider some ideas introduced in [15, 9] related to the interactions between peaks.

In Section 2, we sketch the reduction procedure. Section 3 is dedicated to proving
Theorem 1.1, whereas in Section 4 we give the proof of Theorem 1.2. Finally,
we include two appendix to exhibit some technical details related the reduction
procedure.

2. THE REDUCTION PROCEDURE

2.1. Functional framework and preliminaries. In this subsection, we offer a
brief review of the fractional Sobolev spaces in the context of our problem. Let
Z(RN) be the Schwartz space of rapidly decaying smooth functions, i.e.,

S (RN = {19 € C>°(RY)| sup |z*DPY(x)| < oo for all a, f € Név}.
z€R

As already mentioned in the introduction, here, we consider the fractional Laplacian
(—A)*, with s € (0,1), of a function ¥ € .(R") defined as

(A I(z) == F (|2 F(0)(€)) () for all z € RY, (2.1)

where .% denotes the Fourier transform, i.e.,

FB)(E) = (2m)~ ¥ /R @) dr for all § € RV,
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and % ! its inverse. For later purposes and by taking advantage of the fact that we
work on .7 (R¥), we invoke a suitable characterization of the fractional Laplacian
operator through the extension operator that was introduced by Caffarelli and
Silvestre [7] which is equivalent to (2.1). The importance of this extension is that
it will allow us to solve (1.1) using variational methods. We now briefly describe
this extension. For ¢ € H*(RY), where

2
®7)= {u © ) RN xRN \x - y|N+2S rasoeg

or equivalently H*(RN) = H*(R") (see for example [20]), we consider the boundary
value problem

div(t'=2V9) =0 in RY T,
J(-,0) =¥ on RV,

with Rt = {(z,t) |z € RNt > 0} anddis the s-harmonic extension of the
function ¥ given by

Wa,t) = [ Pl —y,1)0(y)dy,
RN
where & is the generalized Poisson kernel of order s given by Ps(x,t) = 5 A (%)
for all (z,t) € RY ™!, with J#;(2) == cns(1+ |2[?)~ "2 for all z € RV, where the

constant ¢y s > 0 is chosen such that [,y #;(z)dz = 1 holds. Then, (—A) ¥ can
be obtained as the Dirichlet-to-Neumann map for this problem, namely,

(=2)70(x) = —b, lim, 25 9,9(x, ) for all z € RV, (2.2)
where b, := #‘;&75) Now, let m > 0 and g € L?(RY). It is known that the

equation (—A)*9 +mid =g in RY has a unique solution ¢ € H?*(R") given by

P(x) = (Kx*xg)(z) = K(z —2)g(z)dz for all z € RV, (2.3)
RN
where K is the Bessel kernel given by K(§) = 7 !(
Consider the Hilbert space

Hi {55 € (R Bl b [ 0o vaPdeas [ Nm|so|2dx<oo}.<2.4>
+

m) for all £ € RV.

From the weak form of the characterization of the fractional Laplacian given in
(2.2), the solution v given by (2.3) can be described by the relation ¥ (x) = ¥(x, 0)
in the trace sense, where v € H is the unique solution of

bs // 2V V@ do dt +m Yodr = / gpdx forall p € H. (2.5)
RYH RN RN

Therefore, representations (2.3) and (2.5) are equivalent for all g € L?(RY), see [9]
for details.

2.2. The ansatz. To choose proper pointsin the definition of the proposed solutions,
we start by considering points ¢; € w. := ¢~ lw, where w is the set given in (V2), or
equivalently, ¢; := e~ 'Q; € RV, with Q; € w. Let us consider now the region A,
defined by

1

A= {q =(q1,...,q0) € wﬁ | I?%x|qi —qj| >k, Z;rllaxg|qi| < 5_1g} (2.6)

for some 0 < k< 1 and ¢ >1 given.
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For notational simplicity, we introduce the functions

1

w(A* (z —¢;)) and W(z an, z) forallz € RN, (2.7)

_1_
—1

w;(x) == Af

where 7; € {—1,+1}, ¢; € Ac and \; = V(Q,).

For i=1,...,£ and [=1,..., N,we introduce the functions Z;(x):= %1;’: (x) for
all z € RN. Clearly, Z;; are linearly independent, and each one belongs to H?*(R™)
and solves the equation L§(¥) := (=A)*9 + V(Q;)9 — f'(w;)9 =0 in RY. Thus,
it is convenient to consider the space

Z:=span{Zi}i_y _pi=1,..n- (2.8)

The nondegeneracy result in [14] implies that ||¢|| g2s @y < chzl LG (D)l L2y
for all ¢ € Z+ with an independent constant ¢ > 0. Additionally, for functions
¥, € L2(RY), we denote

W)= [ bodo

As already explained in the introduction, solving equation (1.1) is equivalent to
solving the equation (1.8). We expect to find solutions to (1.8) of the form W + ¢,
where W is given in (2.7) and ¢ goes to 0 in H**(R") as ¢ — 0. Thus, we consider
the problem of finding a function ¢€ H?*(RY) N L>(RY) such that

¢ N
(CA) (W +6) + V()W +6) = [V +0) = 3D caZa mEY, o
=1 =1

(Zi, ¢y =0 for all 4,1,

for certain constants ¢;; depending only on q = (q1,...,q¢) € Ac. Note that W+ ¢
is a solution of (1.8) if all the scalars ¢;; in (2.9) are zero. Moreover, observe that
(2.9) is equivalent to

L.(¢) = N.(¢) + E: + iﬁ;CﬂZﬂ in RY, (2.10)
(Zi, ) =0 for all 4,1,
where
Le(¢) = (=A)'¢ + V(ex)o — (W), (2.11)
Ne(¢) = f (W +¢) — f(W) — f'(W)o (2.12)
and ) )
2 7i(V V(ex))wi + f (W Z (w). (2.13)

2.3. A linear problem. We begin this subsection by introducing an appropriate
L>-norm with weights. Specifically, for a function h € L>(R"), we consider the
norm || - ||« defined by

[All« = llo™ "Rl Loo (), (2.14)

where
N—2s

- i (rpar) (219

for certain points ¢; € RV, with i = 1,...,¢, and p € (ﬁ, %)
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The first step in solving (2.9) consists of addressing the following problem: given
h € C(RY) verifying ||h||« < oo, to find a function ¢ € H?*(RN) N L>(RY) such
that for certain constants c;;, it satisfies

£ N
Le(@) =h+) > caZa mnRY, (2.16)

i=1 1=1

(Zy, ) =0 for all ,1.
Now, we shall proceed to study the invertibility of the linear operator L. defined in
(2.11) and also to study its differentiability in terms of the variables q € A., where
A is defined by (2.6). Consider the Banach space C* := {h € C(RY)|||A]|. < oo},
the Hilbert space H defined in (2.4) with m = V(Qo), and the Hilbert space

H.:={¢cH: (Zyd)=0 Vil},

endowed with the inner product
[, 1] := b, // 12V Vi da +/ V(ex)pydx for all ¢ € H.,
Rerl RN

which is equivalent to the inner product of H. We obtain the following result of
existence and uniqueness for solutions of (2.16).

Proposition 2.1. There are numbers Mgy > 0, eg > 0 and dg > 0 such that if
q € w! verifies maxi<;<s |q:| < e 160, R = min;z; |¢; — qj| > Mo, then for all
e € (0,e0) and all h € C*, problem (2.16) admits a unique solution ¢ := T.(h).
Moreover, there is C > 0 such that ||¢]l« < Cllh|« and ||call« < C||hl|« for all 1.

Henceforth, let My > 0, €9 > 0 and dp > 0 given by Proposition 2.1, and consider
the set A, for € € (0,e0). Next result shows that the map S. : A — L(C*) given
by S.(q)(h) = T.(h) for all h € C*, is of class C'.

Proposition 2.2. Under assumptions of Proposition 2.1, for each h € C*, the
map q — S.(q) is of class C*. Moreover, there exists a constant C' > 0 such that
IVq@lls < Clh]l« uniformly on vectors q € A, where ¢ := T.(h).

We omit the proofs of Proposition 2.1 and Proposition 2.2 since they are slight
modifications of some results in [10, 9].

2.4. The finite-dimensional reduction. Consider N.(¢) as in (2.12) and E. as
in (2.13). After straightforward calculations, we estimate the || - ||.-norm of N.(¢),
E. and their respective gradients. See Appendix A for the proofs of the following
two results.

Lemma 2.3. Let |¢||. < i. The following estimates hold:

IN-(6)]l < Cllg|= P2 INL(@)|l < Ol it (2.17)

and
IVaN=(o)]l, < C(Ilg™ P gl P21 g0, ). (2.18)

Lemma 2.4. Let o € (%, %) For every q € A; such that min;»; |¢; — g;| = %,

the following estimates hold:
||E5||* — O(Errlin{N+2s—o,1} + ,‘iN+23_a) and ||qu5||* _ O(E + K/N-‘rQS—O’). (219>

The previous estimates will allow us to prove the existence of a unique solution ¢ of
(2.10), which dependson q € A., and certain properties of the map q+— ¢=¢(q). The
proof is based on a fixed point argument, and it is given in the Appendix A.
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Proposition 2.5. Let q € A, be such that min;x;|¢; — q;| = é, and let o €
(%, Ngzs). Then, there exists C > 0 such that for all sufficiently small €, a unique
solution ¢ = ¢(q) to problem (2.10) exists. Moreover, the map q — ¢(q) is of

Cl-class for the || - ||«-norm and satisfies

||¢||* < C«(gmin{N+237a,1}+HN+2sfa) and ||vq¢||* < C(smin{N+2sfa,1}+HN+2sfa).

2.5. The variational reduction. Observe that u. defined in (1.7) is a solution
to (1.1) if it corresponds to a stationary point of the associated energy functional
& defined formally by

-, 1 ,
E(u) == / (e u(=A)*u+ V(y)u?) dy — / F(u)dy,
2 RN RN
where @ is the unique s-harmonic extension of u. Hence, letting v.(z) := u. (ez),
it is sufficient to study the functional J. defined by

Je(0) = 1/ (v(=A)*v + V(ex)v?) da —/ F(v)dz, (2.20)
where v is the unique s-harmonic extension of v. To choose proper points in the
definition of the proposed solutions, we consider points ¢; € A, where A. is the
set defined in (2.6) and the function ¢ = ¢(q) given by Proposition 2.5, which is
the unique solution to (2.10). According the previous section, notice that ¢;; = 0
in (2.10), foralli=1,2,...,¢,1=1,2,..., N, is equivalent to saying that

ve(2) := W(x) + d(z), xRV, (2.21)
where W is defined by (2.7), is a solution of
(=A)v 4 V(ex)v — f(v) =0 in RY, (2.22)

which in turn is equivalent to saying that u.(y) := W(e~ly) + ¢(c~ty), y € RV,
is a solution of (1.1). Therefore, we need to find points q such that the system
¢ii(q) = 0 for all 4,1 has a solution. This system turns out to be equivalent to a
variational problem. Precisely, consider

Je(q) = Je(0:), (2.23)
where v. = W + ¢ and J; is the functional given in (2.20).

Lemma 2.6. The function u.(y) := W(e™'y) + ¢(e~ty), y € RV, is a solution of
(1.1) if and only if q is a critical point of J-.

The proof is standard and we shall postpone to the Appendix B.

3. PROOF OF THEOREM 1.1

In this section we work under the hypothesis of Theorem 1.1. Also we suppose
that there exists a solution u. of the equation (1.1) having the form (1.6). It is
equivalent to say that the function v. = W + ¢ given in (2.21) solves (2.22), where
W is given in (2.7) and ¢ is given in Proposition 2.5. In this way, the proof of
Theorem 1.1 consists in achieving a contradiction.

By convenience, in what follows, we may fix R > 0 such that

ow, . H(1+o(1))

—(2) = for all R, forall j=1,...,N.
8yj(z) EhE=E orall |z2| >R, forall j=1,...,

where o(1) — 0 as |z] — oo for some ¥ > 0, thanks to [14, Lemma C.2].
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Lemma 3.1. For everyl € {1,...,L}, there exists € > 0 such that for all e € (0, )
one has
dw; - (+0(1) g —ay
f(wi)w—— dz = iy S
RN ( dy; g — allN+?* |gi — ail
foralli=1,...,¢; forallj=1,...,N; where

(3.1)

N

T = AV (Qi)F T B V(Q)) T ( f(w) dm) > 0.

RN
Proof. To fix ideas, we consider only the case i = 1. Observe that w(z) = w(|z])
for all z and

f(w(,z))w((1 o))z +¢) <Cf(w(z)) for all z,& € RN, with |¢| sufficiently large.

w()
Also note that,
w(zipe) p e
lim —————= = lim =1,
p—too  w(p) p=too \ (21, ..., 25, ..., 28) + (0,...,p,...,0)]

where w(p) = w(y) for any y such that |y| = p. Similarly, “’/(%(,f)e") — 1 as

p — +oo. Hence, if we put

V(Q) n
Ip :/ fww<z+pVQl 25e; | dz,
)= [ Sw( g+ v@te,
then by Dominated Convergence Theorem we get

& w)dz as 0.
wviQF) e T e

Also we have

, 1 (V(Qi)3 1 ) 2+ pV(Q1)%
9 = 2s — V 25@;
(p) = V(Q0) RN (W (V(Ql);-*z—i—p Qe |Z+PV(Q1);?ej|

that again by the Dominated Convergence Theorem leads to

V' (p)
w' (pV (Q)=)

dz,

— V(Ql)i /RN fw)dz as p— +oo.

Since

| fewdz =VQUFE V@) T V(a - ),

it follows that
0 fw)wid
aqu - 1)wiay

— V(Q)TT EV(Q)TT (jgr — ) BT
ln — i

VP EVQPTE ([ (VQ)F - a) T4 o)

On the other hand,

0

9 Owy
a‘hj

( f(wl)wldz> =— f(wy)wy 3 dz.
RN RN Zj

Hence, by combining previous estimates we get (3.1) with ¢ = 1. O

We now establish the following result that concerns the location of the peaks.
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Lemma 3.2. There exists € > 0 such that for alle € (0,€) and each j € {1,...,N},one
has

ov . Fir(1+o(1)) qij — gij 2 N+2
——(Qi)v" + +O(e*) +o(k" %) =0,
axj( ) = lar — ¢V 2% g — qi (%) ol )

where

. _ p=2 1N N 1
i =AV(Q:) 1V (Q)»=1" 2 and ~* = N/ ww' ly|ldy < 0,
RN

foralli=1,...,¢; forallj=1,...,N.

S E _
Proof. Letus fix g9 > O sufficiently small such that A; ** ri=0e~1 > R foralle €(0, &),
where § > 0 is such that the Taylor expansion of V' around the point @y holds.
1
Consider B) = {z € RN[|z| <r;},and B = {z € RN\ |z — ¢| < r;}, where
Ai = V(Q;). Tt is sufficient to consider only the case when i = 1. Since we are
assuming that v. = W + ¢ solves the equation

(—A)*ve + V(ey)ve — f(v) =0 in RY.

Bwl
Oy;

Hence, multiplying the previous equality by by making a rearrangement of

the terms and integrating on RY, we get

¢
= —A)*w w; — f(w —awl
0= IRNZ;(( A w + V(Qw — f( z))ayjdy
¢
3w1
+ /RN ; (V(gy) - V(Ql))wlaiyjdy

o (aroe v (o))

¢ ¢ ¢
o (o) s () - (3 ur)e) Gyt
RY =1 =1 1=1 Yi
=A +Ay — A3+ Ay — As.

Now we estimate every term A;.
Estimate for Aj.Since (—A)%w; + V(Q))w; — f(w;) =0 in RN for all [, then A; =0.

Estimate for As.Observe that

B, Owq
Ay — /RN(V(Ey) _ V(Ql))wldey + /RN ;(V(ey) - V(Qo))wla—yjdy

ow
[ Qo) - Vi@ tdy
RN 9~ 3yj
=Ap1 4+ Asp + Az 3.
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For estimating As 1, we first work in B')J\ll. One has

(9’(1]1

|, (Vien) = Vi@ Gitay

:V(QO%*X/ (V(ez+ Q1) — V(Q))w(\F 2 )%(A% 2) ds
Bgl
2 N ov ow
venEE [ ey widy +0E)

2 N

2N OV
= AT T QU +0(E),
J

. dw
5 z/RszwaZjdz:/RNwdez—N/ ww'|z| dz < 0.

Now we work on RN \ B{*. Since V is bounded and

where

we get
[ Ve = V@ Gy = 0 +),
RN\lel j

Then ov
2 __ N
Apr =A™ T o= (Qu)y" + O(ETT),
Yj

For Aj o, observe first that

8w1 N ow A1 21T L
d —)\” 1)\p T — (= AT (qr — dy.
[l [ o2 () e

Recalling the definition of A., for x sufficiently small, we have |¢;—¢q1| = O (%) > Ry
if I # 1. Then,

ow //MNE L AF I(1L+ (1 s
0 (2) ) -0z,
Y l )\25)\ 2g |ql_q| +5‘QZ_C]1|

Now, note that

/B (V <E)\1;s 2 QO) - V(Q0)>w(2 + qo) dz
— 1 62

V(QO)z|2w(z+q0)dz+0(62/]3D2V(Q0)|z|2w(z—|—q0)dz>

=0(e?),

where B = B(0,Ry). Besides, since V € L>®(R"Y), and [,x wdz < oo, by the
Dominated Convergence Theorem we get

1
/ (V(s 1z+Qo>—V(Q0)>w(2+q0)d2—>0 as € — 0.
RN\B(0,Ro) AZE
It follows that

1 qij — Qi

[ S Wen - Vi G = o L W) o
BN 1 Oy lgr — qi la1 — ail

Therefore, we get Az o = o(kVN2%) + O(?).
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For Ay 3, we take into account that V(Q1) — V(Qo) as € — 0, from where we
get immediately As 3 = o(k¥+2%). Thus

2 _n OV
Ay = eV(QUFTE 5
J

(Qu)7" + O(e?) + o).

Estimate for As. Decompose A3 in two terms,

Az = /lel<f(zé:wl> _f(w1)>88132dy+/w\3§11<f(zwl> —f(w1)>8£/}jldy

=1 —
= Az + Aso.

On Bg\ll we have
ow ow
Az =/ Zf’(wl)wza_ldero(/ Zf’(wl)wla?dy>
B 141 Yi B 11 Yi

51 (1+0(1)) q1; — qi;
_ (14 Z(Jrg) Qg — 4 o(kN+25)
lar — @l N2 g — i

7

1#1
where we have use Lemma 3.1. Outside B;{ll we get
"o :
Asz2 = O(Z N+2) = o(K"),
11 lar — a1

that implies

51(1 + 0(1)) quj — i
A = |’Yll( N(_,_gz q15 — qij T O(RN+28).
= o —al [ — al

Estimate for Ay. Note that

811]1

By

(—ay 2 4 y(qy)

Ay; T )3y, =0

This last equality implies that

8101 , ’ 8w1
Ay = - By, 0V - a5,
) /RN (V(ey) - V(Q1)) 55, o dy /RN (f (;wz) f (w1)> o o dy
= A4’1 + A4,2-

Observe that

[ en-veGtay =7 [ 9viQiyeo iyt 5 odio)
B Y BY, J

a1
A1 J Y

and

[ Ve = V@)t dy = O™ +),
RN\B{ Yj

Thus, by Proposition 2.5 we deduce that

_a ow .
Aaal =0(= [ IolloFy +a))*I| 50 du )] + Oter )
RN dy

J
< O(e? + exNT29),
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where p is the function defined in (2.15) and p the corresponding value given in the
definition of the norm || - ||« in (2.14). Besides, note that

4

L)t riyon = [ (1(50) - )
= d

=1

L () )

=1
Hence

AMM=OQANAMHf<: ar) = fw)| dy ) 1961,

1
1 (1+o(1
of | i) IVl
T S v

The previous two equalities and the estimate of ||V¢||. in Proposition 2.5 lead to

(1 1
Ay :O( min{N+2s—o,1} +KN+25 0' Z|ql+0(>) < O(K,/N-‘rQS).
RN

= _ q1|N+257¢7 —
Estimate for As. Observe that by Lemma 2.3 one has
dw min{p+1,3 Owy
w00t ay| < o0 ( [ o
RN
so that, by Proposition 2.5 we get A5 = O (g% 4 exN129).
We finish the proof by considering the previous estimates for each A; and replacing
all of them at the equation (3.2). O

Ay,

Proof of the Theorem 1.1. We have now all ingredients to finish the proof. Indeed, it
is enough for us to follow closely the final argument of the proof of [15, Theorem 1.2].
Without loss of generality, we can assume that |Q1 — Q2| = min,;»; |Q; — Q;| = d-.
In this way, if we put

6464 — (1+0(1)) :€N+25 (1+0(1))
Y = gV Q- Q=

then
5N+25

0l = I?%X(sfj = W = 0c.
For £ > 0 given, consider the set Q. C A, of the £ points where the solution of (1.1)

is concentrated; i.e. Q. ={Q1,...,Q;}. Let

SE—{@{:GQ8|Q1€:Q10T Hlev'-kaz such that hn%)%ﬂ:lv] = 27?l}
E—r

€
It is not difficult to check that there exists Q; € S. and a hyperplane H, such that
Qi € H and any other point of S. belongs to the same half-space of RV divided by
H. If & — 0, we can divided the equation on Lemma 3.2 by d. to obtain

zl (Ql] QU) =o(1) and Z 5” Q= Qi Q” = o(1). (3.3)

= de Q1 — Qi 1#0,Q,E€S8. 0c |Q1 = Qi

Since Q; € S. there exists | # ¢ such that lim.,o ¢ = 1 > 0 and all Q5, with
j # i, belong the same half-space of RV divide by H, but this is a contradiction
with (3.3). Therefore §. = O(e).

Now we choose a point @ € Q. such that |Q —Qo| = maxj_1,__ ¢ |Q;—Qo| = ..
Without loss of generality, we can assume that Q = Q; and by an appropriate
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rotation and translation, also we can assume that Qo = 0 and Q1 = (—a,0,...,0).
For others points Qq, with [ # 1, we have ;1 — @11 > 0. By Lemma 3.2 we have
05
oV Ql Z Yudy Qu — Qu +O(e) + o(== 1 kN25) — 0.
1z © 1Q =l

Now, given 0 < p < N + 2s — 2, we can take kK = 61\%1-55. Notice that

)

f = O(a.). (3.4)

Indeed, if %= 5 # O(ae), then o = 0( ) and Q| = 0( =). As before, there is a point
Q; € S and a hyperplane H such that Qi € H and all the other points belong to
the same half-space of RY divided by H. By Lemma 3.2 we obtain

0f O
72%1 0 Qu = Qij Q” +o( )+o( )+ o(e1+7) = 0. (3.5)
e Qi — Qi
Nevertheless, there exists [ # ¢ such that lim._, f;—iil =1 and for all Q); such that
lim 7@[ ~ Qi =1,
e—0

€
@ — Q; are vectors lying on the same half-space, which leads to a contradiction
with (3.5).

Since (3.4) holds, we get

Yudy Qu — Quu
Vinl0 ; s Q- Q1]

which is impossible due to that

165, Qi — Qn
Vi — E V11(0 0.
1(0) + = eac Qi — Qi > Vu(0) >

This completes the proof. ]

———a. +o(ae) =0,

4. PROOF OF THE THEOREM 1.2

4.1. The reduced energy. Since solutions of (2.22) correspond to stationary
points of its associated energy functional J. defined by (2.20), we have that if
a solution of the form v, := W +¢ in R¥ exists for (2.22), in which W is defined by
(2.7) and ¢ = ¢(q) is given in Proposition 2.5, then we should have J, (v.) ~ JE(W),
where v, and W are the unique s-harmonic extensions of v. and W, respectively,
and the corresponding points q in the definition of W also should be approximately
stationary for the finite-dimensional functional q — JE(W). Thus, our next goal is
to estimate JE(W). The first lemma contains a crucial estimate for this aim. By
convenience, in what follows, we fix Ry > 0 such that

(14 0(1))

(2) = Pz for all |z2| > Ry, forall j =1,...,N.

where o(1) — 0 as |z| = oo for some 7 > 0, thanks to (1.3).

Lemma 4.1. Let 0 € (%,N+2S) be fixred. For any q = (q1,.-.,q¢) € Ac such
that min;; |¢; — q;| > %, where A¢ is defined by (2.6), and for sufficiently small €,
we have

4
. s 251+ o(1)
J-(W) =3 V(Q)r > Lw) =) 7 TS gy — g [N
=1 i#]
+O(€min{N+23,2}) + O(KN+2S)7
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where T; € {=1,+1}, I is given by (1.5) with A =1,

_ Nit2s

7= 2 | Jwda and ;= V(Q)TT 2 V(Q)FT fori# .

Proof. Let us fix 9 > 0 sufficiently small such that A, "‘1757'1- = 6! > Ry for all
e € (0,&0). Observe that

J.(W) = ije(ai)+; /R ) (ijw,(—A)swj)dx

it
1 ¢
+§ /RN (;V(ez)TiTjwiwj)daz — /RN (F (W) — ;F(wz)>dx
It is easy to check that
L) = VIQIFF Ehw) +3 [ (Vien) ~V(Qwiw) de

Moreover, since [po ziw? (z) dz = 0 for all i, where B? = {z € RY ||z| < r;}, by

1
letting BY = {z € RN | A2 |z — ¢| < r;}, we obtain

J

(V) - V@)t ds =\ [ (V(Qi+22) = V(Q))w? (\F2) ds

N B3,

' L,ﬂii

=\ VV(Q;) - ezw? dz + O(e?)
By
= 0(52),
and
2 1
[ o -v@utas =a7T [ (VQi+en) - V@R (F ) ds
RN\ Bt RN\BY.
o N-1

< C€2(N+2870')/ P dp
— . p20
= O(5N+2s).

On the other hand, using the equation solved by w;, i # j, we obtain
/ 7T (wi (= Q) wj + Njww; — w; f(w;)) de = 0.
RN

Now, we estimate each term of interactions between two different peaks. We have

TP o A\ 25 =
[ wittwyae =37 [ pwye((§) 7+ A @ - 0)) v
RN J
Recalling the definition of A., for & sufficiently small, we have that |¢; — ¢;| > Ry
if i # 5. Then,

A\ 25 L Y0(1+0(1))
wi\\ v Y+ )‘1‘23 (qj - Qi) = T N+2s :
(()\j> ) A% |qj B qi|N+2s

RN

Therefore, we obtain

VNN ot 7 Yo
w; f(wj) de = ] A fw)de | ———F—5;(1+0(1)).
RN RN lg; — ail

Now, we estimate

[ iy + Vieowu) do = [ (wif(w;) + (Vo) - V@)wius) da.
RN RN
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The first term has been analyzed. Let us continue with the second term. We have

11 a L
V(ex)wjwjdr = \/"' A7 V(ex)w(A\F (z — Qi))w()\jls (z —q;)) da.
RN RN
Also we have

= 0(£?)

/qv (V(S(E) — V(Ql))wle dx
B’

and

=0 (K)N+28) .

/ 4 (V(ex) — V(Qi))wiwj dx
RN\BA;

Finally, letting ; = {z € Q@ : w; > w; for all j # i}, we obtain

/Ql (F (W) — i: F(wi)) dx

_Z/ 77 f w,w]dx—Z/ (w; dw—I—O(Z/fwlw dm)
J#i JFi VE)

_ZTZT]/\P 17£>\ﬁ71\’;@2& ’YO(lJr(j\H_Qé/ f d13+0( 20—N 2(N+23 U))
i#£] |Qi

Thus, the proof is completed considering all previous estimates. [l

4.2. A suitable expansion of J.. We start this subsection by validating an ex-
pansion for the functional J. given in (2.23) for q € A., the set defined in (2.6),
which will be crucial for finding its critical points. Here, W is given by (2.7).

Proposition 4.2. Let q € A, be such that min;»;|¢; — g;| = %, and let o €

(1;77 N+2“) If ¢ = ¢(q) is the function given in Proposition 2.5, then the following

expansions hold:

js(q) _ JE(W) +O(€min{2(N+2370),2} +I€2(N+2sfa))

and
qug(q) _ Van (W) + O(Emin{Q(N+23—J),2} + KQ(N+2S—U))

uniformly on the vectors q.

Proof. Let q € A.. Then,

To(q) = J.(W —f/ OB dr+ 3 [ O(f(W +6)~ FOW)) da

RN

- [ POV +0) = FOV) = £W)o) da

+5 [ (=8 (W +¢)+V(ex)(W + ) — f(W + ¢)d

b330 [ (A V(@i — Fw)d

Since (—A)*(W+ ¢+ V(ex)(W +¢) — f(W+¢) € Z, with Z defined by (2.8), and
¢ is L?- orthogonal to Z, we obtain

P((=A)* (W +¢) + V(ex)(W + ¢) — f(W + ¢)) dz = 0.
RN
Besides, (—A)*w; +V(Q;)w; — f(w;) =0 in RN foralli=1,...,¢ Now, observe
that, because of (2.19) and Proposition 2.5, we have

‘/ W+ (b f(W)) _ Eg)(bdl’ — O(Emin{Q(N-‘,-Qs—a),Z} + I{Q(NJ'_QS_U))
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and
[, POV +0) = FOV) = 5(¥)6) da

Then, considering estimates in Lemma 4.1, the desired estimate for J.(q) follows.
Now, observe that

. 1 1
VqJ-(q)=VqJ-(W) — 3 /R Va¢Bedr—5 | ¢VqFedr

RN

_ O(Emin{Q(N—i-Qs—a),Q} + HQ(N—}-QS—U)).

43 [ Vabll (W +0)=fW)do +5 [ (F(W0) = (W)oVaWida

4y [ S W40)(Vayodo— [ (FOV+6)=F0V)=£(W)6) VaWds
RN RN

- [ OV +6) = 19 Voo

Then, by using the estimates for ||¢[l« and ||Vq¢|. in Proposition 2.5 and for
|1E:|« and ||VqEe||« given in (2.19), we are able to prove the estimate for V4 7:(q).

Therefore, the proof is completed. O
4.3. A minimization argument. Let ¢/ € N, and let us set 79;_1 = 1 and 79; = —1
for I = 1,...,¢. By following the arguments developed in [15, 9], we choose the

configuration space:
3. = {qe Aclqr, -, qo0 € we and ﬁ?'q’ —gj| > s_ﬁ},
with A¢ given by (2.6), with k = €.
Proposition 4.3. The problem
min J:(q)
admits a minimizer e = (q1,e,---,q20e) € Be for all e > 0 sufficiently small.

Proof. Since J. is continuous, there is a minimizer q. = (q1.¢,-.-,q20,c) € ¥.. To
validate our result, we need to prove that q. € X.. Then, we start looking for an
upper bound on J.(q.). We choose QY = Qo —|—5$X¢, where X;,i=1,2,...,2¢
are the 2¢ vortices of a regular 2¢-polygon centered at Qg with | Xap41—Xar| = 1 for
all k=1,...,¢, where we have considered Xosy1 = X1, and min,»; | X; — X;| = 1.
Moreover, choose sufficiently small € > 0 and let q° € w, such that

1 2s
quk—qSkHIN”S =c forall k=1,...,¢,
where we have considered ¢9,,, = ¢7. Therefore, q° = (¢7,...,¢3,) € .. Note

that in general, if i # j, then |X; — X;| < Cyj, where 1 < Cj; < Cy, with Cy =
max;x; | X; — X;|. Then, we obtain

1 1 2s . . 1 2
0= e = gvsse | foralli# g, 0<*ZT¢UW:O(€ ).
Y 0 i J
and, by Taylor’s expansion, V(Q?) = V(Qo) + 0(5%) for all € > 0 sufficiently
small. Indeed,

21—12l—j

1
Z“Tq [ |N+2s = Z ZTZTZ+J| 0 [N+2s

i#£] j=1 =1 q’LJ
1 20— (2k—1) 1-1 21—2k

1 1
- Z Z TeTit2k—1 149 — ¢° [N+2s Z Z Tm“k — g0, [N
k=1 i=1 7 i+2k—1 i+2k

k=1 =1
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Notice that 7;7;49,—1 = —1 and 7749, = 1. Then,

1 20—(2k—-1) 1 1—121-2k
an' 0 _ |N+25 Z Z 40 — g0y, |V 25 Z Z 10— 0 N2
i#£] g i+2k— k=1 i=1 L i+2k

Now, observe that
97 = aPy2r—1| 2 min g} —qf| =&~ N,
which leads to
1—121—2k
- > —e25(1—1). (4.1)
; Zl |67 — o, |V 22
On the other hand,
__2s
6 — @on1l < 1@ — @al + -+ 1aior—o — diyop—a| < 2k — e 35,
which gives
1 20—(2k—1) I
(2k —1))
>¢ . (4.2)
; ; | 0 qz+2k 1|N+25 Z Qk _ 1 N+2s

Gathering (4.1) and (4.2), we conclude

l
—-1))
ZTZTJ| 0 _ |N+29 = <Z N+29 =1+ 1)

i#£] k=1

(2k—1
<Z+Z 2k — 1 N+22)>

Hence, going back to the main estimate, taking into account the choice of q°
and its properties, by Lemma 4.1 and Proposition 4.2, we obtain

Je(q:) = min Je(q) < J:(q) < 20V (Qo) 715 Iy (w) + C ™™ w5 (4.3)

qe €

> 0.

Now, we claim that q. € X.. Let us suppose, by contradiction, that q. ¢ ..
Hence, we have two possibilities: either there is an index 7 such that ¢; . € Jw, or
|gic — qjc| = e 2=, for some j # i.

In the first case, if ¢; . € Ow,, assumption (V2) implies that V(Q;.c) > V(Qo)+ 41
for some p; > 0. According to Proposition 4.2, we have

24
p+l_ N p+l_ N p+l_ N
SV(Qi) T T L(w) = V(Qie) B L (w) + Y V(Qye) 3 I (w)
i=1 j#i
p+l N pt+1l
> V(Qje)r T = Li(w) + V(Qo)r
JFi i1 N
> 20V (Qo)p=1 % Iy (w) + pia

for some 12 > 0, which is a contradiction with (4.3).
In the second case, we again invoke Proposition 4.2 and obtain

Jo(qe) > 201 (w)V(Qo) P15 + Cope®

for some Cy > 0. Since €® > emin{2s 755} for all € > 0 sufficiently small, we again
obtain a contradiction with (4.3). Therefore, the proof is completed. t

=

N
2

s (w) + po

Proof of Theorem 1.2. The conclusion follows from Lemma 2.6, Proposition 4.2,
Proposition 4.3 and the minimization argument. ]
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APPENDIX A. PROOFS OF THE RESULTS IN SUBSECTION 2.4
Proof of Lemma 2.5. Let q be in A, fixed. There exist 0 < to < t; < 1 such that
IN(@)] = [F(W + ) = fF(W) = f'(W)| = |f"(W + t20)¢°t1].
Now, we consider two cases: when |W| > ¢ and otherwise. If |W| < ¢, we obtain
INe(8)] < Clof”, (A.1)

and if |W| > ¢, we obtain
IN-(9)] < Clgl?, (A.2)

since f'(cW) < C for any fixed ¢ > 0. Therefore, the estimate on the left hand
side in (2.17) follows from (A.1) and (A.2).
On the other hand, for some 0 < t; < 1, we obtain

1F'(W + ) — f/(W)] = plp — D)|W + t16P~2|¢| < C|p|™n{P=11}

that leads to the estimate on the right hand side in (2.17). Besides, for ¢ € C*, we
obtain [0 #(f'(W + ¢) — f/(W))y| < |p|™in{P=1:1} | g=H4p|. Therefore,

I(F' (W + @) — f' (W)l < Ol ]

Finally, since

O N(6) = (W 4 6) = (W) = " (W)6) S 4 (7 (W +6) — /(W) 22
qil qil qil
we obtain (2.18). Therefore, the proof is completed. O
Proof of Lemma 2.4. First, note that E. = E; . + Fs ., where

¢ 4

Z Viex))w; and Ea.:= f (W Z (wy).  (A.3)

A simple computation gives |Ey | < Ce™{N+2s=o.1} " Thus, we only need to
estimate ||E25||* For convenience, we work on ; := {z € RN 1 w; > w; if j #1i}

foralli=1,...,¢. Hence, in §2;, we obtain
By < Cf'(wi ; m

<C
(1 + ‘x —q |)(N+23 (p—1)+o Z |C] — g |N+29 o
SC(Q<.’E)) K/N-‘rQG 07

where we have considered u(N — 2s) = 0. Since ||E:|« < |E1ell« + [|E2.ll«, the
estimate on the left hand side in (2.19) follows.
On the other hand, observe that

Vol V(Qi) =V (e2)) =2 VV(Qi)l; |Vau(w(V(Q:)% (z—q.)))| <

e|VV(Qi)]
(1 + Ix _ qi|)N+2s

1
c
EEAPEPIIEEE

[eVV(Qi)wi(x)| <

and

VY@l — g1 1
(V(Q) - V) Vywi(o)] < co Nl (o L),

Therefore, since B, = Ey . + E2 . where E; . and Es . are given by (A.3), from
(V2), we obtain ||VqE1 ||« = O(g). On the other hand, on the set €;, we obtain

|Q(x)_li(f/(W) - f/(wz))quwl| < C/{,N+23_U_
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In this way, ||[VqFacll« < CxNT2579. Since |VqEe|l« < |VoFi.e
the estimate on the right hand side in (2.19) follows.

« T ||qu2,s||*7
U

Proof of Proposition 2.5. Let us consider the operator§. : A, — C* defined by
Fe(d)=T-(N:(¢) + E.), where T is given by Proposition 2.1 and
Ari={peC o[l <r}

for a suitable 0 < r < 1, which we will choose later. Note that if we are able to
show that §. is a contraction, then we shall obtain that there is a fixed point in A,
for §., which is equivalent to solving (2.10). We have

IF-(D) ]l < NIT- (Ne(9) + Eo) ||« < ClIN(9) + Bl < Oy (P2 || EL|,) -
Additionally, we note that

18=(¢1) = Be(@2)[l+ < ClINe(¢1) — Ne(d2)[l« for ¢1, 2 € A,

Hence, §. is a contraction if N also it is. Observe that | N.(¢1 -N:(¢2)|=|N.(¢)| |p1—
@2 for some @ on the line that joins ¢; with ¢o. In this way, from (2.17) it follows
that

IN=(¢1) — Ne(¢2)]l« < CllollP™ P75 g1 — o]l

and then [|§=(¢1) — F= (o)« < CrmntP=L1}|g, — gy ..
Now, choosing a suitable r > 0, for ¢ > 0 sufficiently small we obtain ||§(¢)|l. < r

for all ¢ € A, and [|§:(¢1) — F=(d2)[l« < [|¢1 — d2[[«  for ¢1,¢2 € A,.
Concerning the differentiability properties, recall that ¢ is defined by the relation
B.(¢,q) == ¢ — T-(N:(¢) + E:) = 0.

Hence, Vi B: (¢, q)[n] = n—T:(n NX(¢)) := n+Me(n), where Mc(n) = —T=(nNL(¢)).
Now, by using the fact that ¢ € A,, from (2.17) we get || M (n)]« < CHnHinm{p_l’l}.
This implies that for small ¢, the linear operator V4 B. (¢, q) is invertible in C*, with
a uniformly bounded inverse depending continuously on its parameters. Then, by
applying the implicit function theorem, we obtain that ¢(q) is a C'-function into
C*, with Vq¢ = —(VBe(¢,q)) " (VqB:(4,q)). Since

que(¢7 q) = 7vqu(Ns(¢) + Es) - TE(VqNE(¢) + qus)7
where all these expressions depend continuously on their parameters, it follows that
[Va@ll« < CUIN(D)+ + [|1E[l« + [[VaNe(@)ll+ + Vo Eell+),
and using the first part of this proposition, the estimates (2.17), (2.18) and (2.19),
Proposition 2.1 and the constraints (2.6), we have completed the proof. O
APPENDIX B. PROOF OF LEMMA 2.6

Proof of Lemma 2.6. First, we assume that u. is a solution of (1.1) or, equivalently,
that v, given by (2.21) solves (2.22). Then, for each i = 1,2,...,¢, it follows that

In other words,

NN | asos o OV / ., O
Ban (@) =bs //Rf“ t V“N(aqﬂ)dx dt + o Vex)ve 90 f(vs)aqil dx
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for all 4, j, which implies that q is a critical point of .. On the other hand, if q is
a critical point of J., then, for v, given by (2.21), from (2.10) we have that

~ l N
Vo (32) [gqﬂ =3 chkzjka(lgqf) —0 foralli,l,
¢ j=1k=1 '

or equivalently

¢ N
S e (D) Zijk Zi + V(ex) ZinZi + 0(1)) = 0 for all 4,1,
j=1k=1
oW+¢) _

where o(1) — 0 uniformly in the || - |[«-norm since =5—> = —7;Z; + o(1). Now,

9qi1

noticing that the last system on the ¢;’s is almost diagonal, we can conclude that
¢y = 0 for all 4,1, and therefore v, solves (2.22). O
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