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Abstract. We consider the equation

ε2s(−∆)su + V (x)u− f(u) = 0 in RN ,

where s ∈ (0, 1), p ∈
(
1, N+2s

N−2s

)
, N > 2s, f(u) = |u|p−1u, V ∈ L∞(RN )

is such that infRN V > 0 and ε > 0 is small. We study the existence and

nonexistence of solutions concentrating at a local minimum point of V as
ε → 0 without using any symmetry assumption on V . First, we prove that

certain type of positive solutions exhibiting peaks do not exist. Then, we
study the existence of sign-changing solutions under a suitable configuration of

positive and negative peaks. To guarantee the existence, we cannot neglect the

interaction between peaks. In particular, by using a minimization argument,
we found solutions exhibiting peaks at the vertices of a 2`-regular polygon,

such that two adjacent peaks have alternate sign.

1. Introduction

This paper concerns the existence and nonexistence of solutions of the equation

ε2s(−∆)su+ V (x)u− f(u) = 0 in RN , (1.1)

where s ∈ (0, 1), p ∈
(
1, N+2s

N−2s

)
, N > 2s, f(t) = |t|p−1t, V ∈ L∞(RN ) is such that

infRN V > 0 and ε > 0 is small.

It is well known that solutions of (1.1) give rise to standing wave solutions of the
fractional nonlinear Schrödinger equation

i~
∂ψ

∂t
= ~2s(−∆)sψ + U(x)ψ − |ψ|p−1ψ in RN × (0,+∞), (1.2)

in the semiclassical limit regime 0 < ε := ~� 1, where U(x) is a bounded potential
and ~ denotes the usual Planck constant. Indeed, standing wave solutions of (1.2)

have the form ψ(x, t) = u(x)e
iEt
ε , where u represents a real-valued function. Then,

by letting V (x) = U(x) +E, one can check directly that such a function u actually
satisfies (1.1). Equation (1.2) was introduced by Laskin [16, 17] as a generalization of
the classical nonlinear Schrödinger equation where the Brownian trajectories that
lead to standard quantum and statistical mechanics are replaced by the Lévy paths,
leading to fractional quantum and fractional statistical mechanics.

Throughout this paper, S (RN ) denotes the Schwartz space of rapidly decaying
smooth functions, and the fractional Laplacian (−∆)s, with s ∈ (0, 1), of a function
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2 S. ALARCÓN, A. RITORTO, AND A. SILVA

ϑ ∈ S (RN ) is defined by

(−∆)sϑ(x) := F−1
(
|ξ|2sF (ϑ)(ξ)

)
(x) for all x ∈ RN ,

where F denotes the Fourier transform and F−1 its inverse. Additionally, we
consider the space Hs(RN ), which is a natural space for solutions of (1.1) and can
be defined in an alternative way via a Fourier transform by the space

Ĥs(RN ) :=

{
ϑ ∈ L2(RN ) |

∫
RN

(1 + |ξ|2s)|F (ϑ)(ξ)|2dξ <∞
}
.

Continuing the route initiated by Amick and Toland [6] for the study of the
Benjamin-Ono equation, i.e., the equation (1.1) with s = 1

2 and N = 1, Frank
and Lenzmann [13] studied the uniqueness of positive solutions to (1.1) in the one-
dimensional case for s ∈ (0, 1), obtaining nondegeneracy and symmetry of solutions.
These results were extended to N ≥ 1 in [14], getting also uniqueness for radial
solutions and nondegeneracy of ground state solutions.

In recent years, many results regarding concentration phenomena for equation
(1.1) and its generalizations, under the assumption that infRN V > 0 have arisen;
see, for instance, [2, 3, 4, 5, 9, 8, 11, 24, 23, 1, 19, 18, 25]. In particular, in [19, 23, 25],
multipeak solutions were studied by overlapping single peaks that are sufficiently
far away from one another so that one peak has no effect on the other peaks in the
areas where decay occurs, avoiding interactions between peaks.

Here, we are interested in the case where the interactions between peaks are
essential to building clustered solutions to (1.1) with peaks approaching at the
same point. For the case s = 1, this phenomenon was studied for the first time
by Kang and Wei [15]. For the case s ∈ (0, 1), we know of two works motivat-
ing our study. Positive solutions exhibiting ` interacting peaks concentrating at
a local maximum of the potential V were found by Dávila, Del Pino and Wei [9]
through the Lyapunov-Schmidt variational reduction. Also via a reduction scheme,
Long and Lv [18] constructed sign-changing solutions concentrating at a local min-
imum of the potentialV under certain symmetry assumptions onV . To the best of
our knowledge, those results seem to be the only ones available concerning sign-
changing solutions to (1.1) in the literature. In both works, the interaction between
the peaks cannot be neglected, since it plays a key role in guaranteeing the exis-
tence of the solutions. Our main goals here are to study situations other than those
in [9, 18]. Specifically, without any symmetry assumption regarding the potential
V , we first prove the nonexistence of positive solutions of such type concentrat-
ing at a local minimum of the potential V and then, we study the issue of the
existence of sign-changing solutions exhibiting interacting peaks under appropriate
configurations of concentration points.

To put our results into perspective, in the remainder of this paper, we consider
the functionw∈Hs(RN ) being the unique positive radial ground state solution of{

(−∆)sw + w − f(w) = 0 in RN ,
w(0) = maxRN w, w(x)→ 0 as |x| → ∞,

in which f(t) = |t|p−1t for all t ∈ R, s ∈ (0, 1), p ∈
(
1, N+2s

N−2s

)
and N > 2s, see [14].

It is known that such function w satisfies

w(z) =
γ0(1 + o(1))

|z|N+2s
, where o(1)→ 0 as |z| → ∞ for some γ0 > 0. (1.3)

We point out that this asymptotic behavior differs from the one known for the
solutions to the problem in the case s = 1, which is an exponential type decay
at infinity. Despite this fact, the decay (1.3) will be sufficient and crucial for
our purposes although we will have to do accurate estimates to cover the case
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0<s< 1. Observe that for a fixedλ> 0, the function wλ(y) := λ
1
p−1w(λ

1
2s y), y∈RN ,

belongs toH2s+1(RN ) ∩ C∞(RN ) and verifies

(−∆)sϑ+ λϑ− f(ϑ) = 0 in RN , (1.4)

which, after a suitable change in variables, can be seen as a limit equation coming
from (1.1). Moreover, the function wλ, among all nontrivial solutions of (1.4) in
H2s(RN ), yields the lowest possible value for the energy functional Iλ defined by

Iλ(ṽ) :=
1

2

∫
RN

(v(−∆)sv + λv2) dx−
∫
RN

F (v) dx, (1.5)

whereF (t)=
∫ t

0
f(s) ds= 1

p+1 |t|
p+1 and ṽ is the s-harmonic extension of v∈H2s(RN ).

Then, it is reasonable to search for solutions uε of (1.1) that resemble

uε(x) ∼
`′∑
j=1

λ
1
p−1

j w
(
λ

1
2s
j

(x−Qj
ε

))
±
∑̀

j=`′+1

λ
1
p−1

j w
(
λ

1
2s
j

(x−Qj
ε

))
, x ∈ RN ,

for a suitable choice of points Q1, . . . , Q` close to the same critical point Q0 of V ,
and certain positive values λ1, . . . , λ` close to V (Q0). We are interested in the case
in which Q0 is a local minimum point of V . To continue, we introduce the function

wQλ (x) := λ
1
p−1w

(
λ

1
2s

(x−Q
ε

))
, x ∈ RN ,

where Q ∈ RN and λ > 0; and proper hypotheses regarding the potential V .
Specifically, we assume that the following statements hold:

(V0) V ∈ C(RN ) ∩ L∞(RN ) and infRN V > 0.
(V1) There exists an open bounded smooth domain Ω ⊂ RN such that V ∈C1(Ω),

and there exists unique Q0 ∈ Ω such that V (Q0) = infΩ V < inf∂Ω V.
(V2) There exists an open set ω compactly contained in Ω such that Q0 ∈ int(ω),

V ∈ C1,θ(ω) for some θ ∈ (0, 1), and V (Q) > V (Q0) for all Q ∈ ω \ {Q0}.
Our first main result concerns the nonexistence of certain positive solutions concen-
trating near a nondegenerate local minimum point of the potential V . Of course,
this result extends to the fractional case the Theorem 1.2 in [15].

Theorem 1.1. Let N > 1 and ` ∈ N, ` > 1. Assume that V satisfies (V0), (V1),
and (V2), with V ∈ C2(ω) and det(D2V (Q0)) 6= 0. Then, there exists ε0 > 0 such
that for each 0 < ε < ε0 the equation (1.1) cannot have a positive solution uε of
the form

uε(x) =
∑̀
i=1

w
Qεi
λεi

(x) + ϕε(x), x ∈ RN , (1.6)

whereϕε ∈ H2s(RN ), with ϕε → 0 on H2s(RN ) as ε→ 0, and λεi = V (Qεi )→ V (Q0)

as ε→ 0 and min
i 6=j

∣∣Qεi −Qεj∣∣ > ε1− ρ+2
N+2s and Qεi → Q0 as ε→ 0 for all i = 1, . . . , `,

where 0 ≤ ρ < N + 2s− 2 is given.

The proof is based on the study of a system of equations on the locations of the
peaks, joint an argument that relies on the nondegeneracy of the potential V on Q0.

Our second main result refers to the existence of sign-changing solutions that
exhibit the same numbers of positive and negative peaks.

Theorem 1.2. Let N > 1 and ` ∈ N. Assume that (V0), (V1) and (V2) hold. Then,
for each ε > 0 that is sufficiently small, there exists a solution uε ∈ H2s(RN ) of
(1.1) such that

uε(x) =
∑̀
i=1

w
Qεi
λεi

(x)−
2∑̀

i=`+1

w
Qεi
λεi

(x) + ϕε(x), x ∈ RN , (1.7)
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where ϕε ∈ H2s(RN ), with ϕε → 0 on H2s(RN ) as ε → 0, and λεi = V (Qεi ), with
Qεi ∈ ω satisfying V (Qεi )→ V (Q0) as ε→ 0. Moreover,

min
i6=j

∣∣Qεi −Qεj∣∣ > ε
N+s
N+2s and Qεi → Q0 as ε→ 0 for all i = 1, . . . , 2`.

The proof is based on a minimization argument where the term representing
the interaction between peaks has to be precisely controlled, which is achieved
by choosing a configuration of points involving the same number of positive and
negative peaks. This argument can be compared with that of maximizing in [9,
Theorem 3] related the existence of multiple positive peaks concentrating at a local

maximum point of V verifying mini 6=j
∣∣Qεi −Qεj∣∣ > ε

4−s
4 . Unlike that work, here we

need more precise estimates of the error (compare our Lemma 4.1 with [9, Lemma
6.4]) and to choose the concentration points in a very special form in order to obtain
the desired effect of the interaction between peaks. Namely, in our argument we
will choose points Qεi as the vertices of a regular 2`-polygon centered at Q0 so that
two adjacent peaks have alternate sign, and then will obtain the desired result. We
emphasize that, under our hypothesis, such configuration of concentration points
has not been considered in the literature yet, even for the case s = 1.

The proof of our theorems relies on the Lyapunov-Schmidt reduction method,
which reduces the problem of finding u ∈ H2s(RN ) that solves (1.1) to finding a
critical point q ∈ RN`, where q = ε−1(Q1, . . . , Q`) ∈ RN`, for a function denoted
by Jε. This latter comes from evaluating the energy functional Jε associated to

(−∆)sϑ+ V (εx)ϑ− f(ϑ) = 0 in RN (1.8)

in a constructed solution that, roughly speaking, has the form vε(x)=W (x)+φε(x),

x∈RN , with W (x) =
∑`
i=1 τiw

Qi
λi

(εx), τi ∈{−1, 1}, and the remainder term φε is of

lower order than W respect to a weighted norm. It is,Jε(q) := Jε(ṽε), where ṽε is
the s-harmonic extension of vε for suitable points q ∈ RN`. Since finding critical
points of Jε becomes equivalent to finding solutions to (1.8), our effort shall be fully
devoted to finding critical points of Jε. The reduction procedure used here was
devised in [10] for a slightly supercritical problem involving the Laplacian operator
in a bounded domain; see also [12, 21, 22, 26], among other pioneering works in
which this method has been implemented for the case s = 1. Additionally, we also
consider some ideas introduced in [15, 9] related to the interactions between peaks.

In Section 2, we sketch the reduction procedure. Section 3 is dedicated to proving
Theorem 1.1, whereas in Section 4 we give the proof of Theorem 1.2. Finally,
we include two appendix to exhibit some technical details related the reduction
procedure.

2. The reduction procedure

2.1. Functional framework and preliminaries. In this subsection, we offer a
brief review of the fractional Sobolev spaces in the context of our problem. Let
S (RN ) be the Schwartz space of rapidly decaying smooth functions, i.e.,

S (RN ) :=
{
ϑ ∈ C∞(RN ) | sup

x∈RN
|xαDβϑ(x)| <∞ for all α, β ∈ NN0

}
.

As already mentioned in the introduction, here, we consider the fractional Laplacian
(−∆)s, with s ∈ (0, 1), of a function ϑ ∈ S (RN ) defined as

(−∆)sϑ(x) := F−1
(
|ξ|2sF (ϑ)(ξ)

)
(x) for all x ∈ RN , (2.1)

where F denotes the Fourier transform, i.e.,

F (ϑ)(ξ) := (2π)−
N
2

∫
RN

e−iξ·xϑ(x) dx for all ξ ∈ RN ,
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and F−1 its inverse. For later purposes and by taking advantage of the fact that we
work on S (RN ), we invoke a suitable characterization of the fractional Laplacian
operator through the extension operator that was introduced by Caffarelli and
Silvestre [7] which is equivalent to (2.1). The importance of this extension is that
it will allow us to solve (1.1) using variational methods. We now briefly describe
this extension. For ϑ ∈ Hs(RN ), where

Hs(RN ) :=

{
u ∈ L2(RN ) |

∫∫
RN×RN

|u(x)− u(y)|2

|x− y|N+2s
dx dy <∞

}
,

or equivalently Hs(RN ) = Ĥs(RN ) (see for example [20]), we consider the boundary
value problem {

div
(
t1−2s∇ϑ̃

)
= 0 in RN+1

+ ,

ϑ̃(·, 0) = ϑ on RN ,

with RN+1
+ := {(x, t) |x ∈ RN , t > 0} and ϑ̃ is the s-harmonic extension of the

function ϑ given by

ϑ̃(x, t) :=

∫
RN

Ps(x− y, t)ϑ(y) dy,

where Ps is the generalized Poisson kernel of order s given by Ps(x, t) := 1
tN

Ks

(
x
t

)
for all (x, t) ∈ RN+1

+ , with Ks(z) := cN,s(1 + |z|2)−
N+2s

2 for all z ∈ RN , where the
constant cN,s > 0 is chosen such that

∫
RN Ks(z) dz = 1 holds. Then, (−∆)sϑ can

be obtained as the Dirichlet-to-Neumann map for this problem, namely,

(−∆)sϑ(x) = −bs lim
t→0+

t1−2s ∂tϑ̃(x, t) for all x ∈ RN , (2.2)

where bs := Γ(s)
21−2sΓ(1−s) . Now, let m > 0 and g ∈ L2(RN ). It is known that the

equation (−∆)sϑ+mϑ = g in RN has a unique solution ψ ∈ H2s(RN ) given by

ψ(x) = (K ∗ g)(x) :=

∫
RN
K(x− z) g(z) dz for all x ∈ RN , (2.3)

where K is the Bessel kernel given by K(ξ) := F−1
(

1
m+|ξ|2s

)
for all ξ ∈ RN .

Consider the Hilbert space

H :=

{
ϕ̃ ∈ H1

loc(RN+1
+ ) | ‖ϕ̃‖2H := bs

∫∫
RN+1

+

t1−2s|∇ϕ̃|2dx dt+

∫
RN
m|ϕ|2dx<∞

}
.(2.4)

From the weak form of the characterization of the fractional Laplacian given in

(2.2), the solution ψ given by (2.3) can be described by the relation ψ(x) = ψ̃(x, 0)

in the trace sense, where ψ̃ ∈ H is the unique solution of

bs

∫∫
RN+1

+

t1−2s∇ψ̃∇ϕ̃ dx dt+m

∫
RN

ψϕdx =

∫
RN

gϕ dx for all ϕ ∈ H. (2.5)

Therefore, representations (2.3) and (2.5) are equivalent for all g ∈ L2(RN ), see [9]
for details.

2.2. The ansatz. To choose proper points in the definition of the proposed solutions,
we start by considering points qi ∈ ωε := ε−1ω, where ω is the set given in (V2), or
equivalently, qi := ε−1Qi ∈ RN , with Qi ∈ ω. Let us consider now the region Λε
defined by

Λε :=
{
q = (q1, . . . , q`) ∈ ω`ε | max

i 6=j
|qi − qj | > κ−1, max

i=1,...,`
|qi| < ε−1ς

}
(2.6)

for some 0<κ�1 and ς≥1 given.
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For notational simplicity, we introduce the functions

wi(x) := λ
1
p−1

i w(λ
1
2s
i (x− qi)) and W (x) :=

∑̀
i=1

τiwi(x) for all x ∈ RN , (2.7)

where τi ∈ {−1,+1}, qi ∈ Λε and λi = V (Qi).
For i= 1, . . . , ` and l= 1, . . . , N , we introduce the functions Zil(x) := ∂wi

∂xl
(x) for

all x ∈ RN . Clearly, Zil are linearly independent, and each one belongs to H2s(RN )
and solves the equation Li0(ϑ) := (−∆)sϑ+ V (Qi)ϑ− f ′(wi)ϑ = 0 in RN . Thus,
it is convenient to consider the space

Z := span {Zil}i=1,...,`; l=1,...,N . (2.8)

The nondegeneracy result in [14] implies that ‖φ‖H2s(RN ) ≤ c
∑`
i=1 ‖Li0(φ)‖L2(RN )

for all φ ∈ Z⊥ with an independent constant c > 0. Additionally, for functions
ψ,ϕ ∈ L2(RN ), we denote

〈ψ,ϕ〉 :=

∫
RN

ψϕdx.

As already explained in the introduction, solving equation (1.1) is equivalent to
solving the equation (1.8). We expect to find solutions to (1.8) of the form W + φ,
where W is given in (2.7) and φ goes to 0 in H2s(RN ) as ε→ 0. Thus, we consider
the problem of finding a function φ∈H2s(RN ) ∩ L∞(RN ) such that(−∆)s(W + φ) + V (εx)(W + φ)− f(W + φ) =

∑̀
i=1

N∑
l=1

cilZil in RN ,

〈Zil, φ〉 = 0 for all i, l,

(2.9)

for certain constants cil depending only on q = (q1, . . . , q`) ∈ Λε. Note that W + φ
is a solution of (1.8) if all the scalars cil in (2.9) are zero. Moreover, observe that
(2.9) is equivalent to Lε(φ) = Nε(φ) + Eε +

∑̀
i=1

N∑
l=1

cilZil in RN ,

〈Zil, φ〉 = 0 for all i, l,

(2.10)

where

Lε(φ) := (−∆)sφ+ V (εx)φ− f ′(W )φ, (2.11)

Nε(φ) := f (W + φ)− f(W )− f ′(W )φ (2.12)

and

Eε :=
∑̀
i=1

τi(V (Qi)− V (εx))wi + f (W )−
∑̀
i=1

τif(wi). (2.13)

2.3. A linear problem. We begin this subsection by introducing an appropriate
L∞-norm with weights. Specifically, for a function h ∈ L∞(RN ), we consider the
norm ‖ · ‖∗ defined by

‖h‖∗ := ‖%−µh‖L∞(RN ), (2.14)

where

%(x) :=
∑̀
i=1

(
1

1 + |x− qi|2

)N−2s
2

(2.15)

for certain points qi ∈ RN , with i = 1, . . . , `, and µ ∈
(

N
2(N−2s) ,

N+2s
N−2s

)
.
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The first step in solving (2.9) consists of addressing the following problem: given
h ∈ C(RN ) verifying ‖h‖∗ < ∞, to find a function φ ∈ H2s(RN ) ∩ L∞(RN ) such
that for certain constants cil, it satisfies Lε(φ) = h+

∑̀
i=1

N∑
l=1

cilZil in RN ,

〈Zil, φ〉 = 0 for all i, l.

(2.16)

Now, we shall proceed to study the invertibility of the linear operator Lε defined in
(2.11) and also to study its differentiability in terms of the variables q ∈ Λε, where
Λε is defined by (2.6). Consider the Banach space C∗ :=

{
h ∈ C(RN ) | ‖h‖∗ <∞

}
,

the Hilbert space H defined in (2.4) with m = V (Q0), and the Hilbert space

Hε :=
{
φ̃ ∈ H : 〈Zil, φ〉 = 0 ∀i, l

}
,

endowed with the inner product

[φ̃, ψ̃] := bs

∫∫
RN+1

+

t1−2s∇φ̃∇ψ̃ dx+

∫
RN

V (εx)φψ dx for all ψ̃ ∈ Hε,

which is equivalent to the inner product of H. We obtain the following result of
existence and uniqueness for solutions of (2.16).

Proposition 2.1. There are numbers M0 > 0, ε0 > 0 and δ0 > 0 such that if
q ∈ ω`ε verifies max1≤i≤` |qi| < ε−1δ0, R := mini 6=j |qi − qj | > M0, then for all
ε ∈ (0, ε0) and all h ∈ C∗, problem (2.16) admits a unique solution φ := Tε(h).
Moreover, there is C > 0 such that ‖φ‖∗ ≤ C‖h‖∗ and ‖cil‖∗ ≤ C‖h‖∗ for all i, l.

Henceforth, let M0 > 0, ε0 > 0 and δ0 > 0 given by Proposition 2.1, and consider
the set Λε for ε ∈ (0, ε0). Next result shows that the map Sε : Λε → L(C∗) given
by Sε(q)(h) = Tε(h) for all h ∈ C∗, is of class C1.

Proposition 2.2. Under assumptions of Proposition 2.1, for each h ∈ C∗, the
map q 7→ Sε(q) is of class C1. Moreover, there exists a constant C > 0 such that
‖∇qφ‖∗ ≤ C‖h‖∗ uniformly on vectors q ∈ Λε, where φ := Tε(h).

We omit the proofs of Proposition 2.1 and Proposition 2.2 since they are slight
modifications of some results in [10, 9].

2.4. The finite-dimensional reduction. Consider Nε(φ) as in (2.12) and Eε as
in (2.13). After straightforward calculations, we estimate the ‖ · ‖∗-norm of Nε(φ),
Eε and their respective gradients. See Appendix A for the proofs of the following
two results.

Lemma 2.3. Let ‖φ‖∗ < 1
2 . The following estimates hold:

‖Nε(φ)‖∗ ≤ C‖φ‖min{p,2}
∗ , ‖N ′ε(φ)‖∗ ≤ C‖φ‖min{p−1,1}

∗ (2.17)

and

‖∇qNε(φ)‖∗ ≤ C
(
‖φ‖min{p,2}

∗ + ‖φ‖min{p−1,1}
∗ ‖∇qφ‖∗

)
. (2.18)

Lemma 2.4. Let σ ∈
(
N
2 ,

N+2
2

)
. For every q ∈ Λε such that mini 6=j |qi − qj | = 1

κ ,
the following estimates hold:

‖Eε‖∗ = O
(
εmin{N+2s−σ,1} + κN+2s−σ) and ‖∇qEε‖∗ = O

(
ε+ κN+2s−σ). (2.19)

The previous estimates will allow us to prove the existence of a unique solution φ of
(2.10), which depends on q∈Λε, and certain properties of the map q 7→φ=φ(q). The
proof is based on a fixed point argument, and it is given in the Appendix A.



8 S. ALARCÓN, A. RITORTO, AND A. SILVA

Proposition 2.5. Let q ∈ Λε be such that mini 6=j |qi − qj | = 1
κ , and let σ ∈(

N
2 ,

N+2s
2

)
. Then, there exists C > 0 such that for all sufficiently small ε, a unique

solution φ = φ(q) to problem (2.10) exists. Moreover, the map q 7→ φ(q) is of
C1-class for the ‖ · ‖∗-norm and satisfies

‖φ‖∗ ≤ C
(
εmin{N+2s−σ,1}+κN+2s−σ) and ‖∇qφ‖∗ ≤ C

(
εmin{N+2s−σ,1}+κN+2s−σ).

2.5. The variational reduction. Observe that uε defined in (1.7) is a solution
to (1.1) if it corresponds to a stationary point of the associated energy functional
Eε defined formally by

Eε(ũ) =
1

2

∫
RN

(
ε2su(−∆)su+ V (y)u2

)
dy −

∫
RN

F (u) dy,

where ũ is the unique s-harmonic extension of u. Hence, letting vε(x) := uε (εx),
it is sufficient to study the functional Jε defined by

Jε(ṽ) =
1

2

∫
RN

(
v(−∆)sv + V (εx)v2

)
dx−

∫
RN

F (v) dx, (2.20)

where ṽ is the unique s-harmonic extension of v. To choose proper points in the
definition of the proposed solutions, we consider points qi ∈ Λε, where Λε is the
set defined in (2.6) and the function φ = φ(q) given by Proposition 2.5, which is
the unique solution to (2.10). According the previous section, notice that cil = 0
in (2.10), for all i = 1, 2, . . . , `, l = 1, 2, . . . , N , is equivalent to saying that

vε(x) := W (x) + φ(x), x ∈ RN , (2.21)

where W is defined by (2.7), is a solution of

(−∆)sv + V (εx)v − f(v) = 0 in RN , (2.22)

which in turn is equivalent to saying that uε(y) := W (ε−1y) + φ(ε−1y), y ∈ RN ,
is a solution of (1.1). Therefore, we need to find points q such that the system
cil(q) = 0 for all i, l has a solution. This system turns out to be equivalent to a
variational problem. Precisely, consider

Jε(q) := Jε(ṽε), (2.23)

where vε = W + φ and Jε is the functional given in (2.20).

Lemma 2.6. The function uε(y) := W (ε−1y) + φ(ε−1y), y ∈ RN , is a solution of
(1.1) if and only if q is a critical point of Jε.

The proof is standard and we shall postpone to the Appendix B.

3. Proof of Theorem 1.1

In this section we work under the hypothesis of Theorem 1.1. Also we suppose
that there exists a solution uε of the equation (1.1) having the form (1.6). It is
equivalent to say that the function vε = W + φ given in (2.21) solves (2.22), where
W is given in (2.7) and φ is given in Proposition 2.5. In this way, the proof of
Theorem 1.1 consists in achieving a contradiction.

By convenience, in what follows, we may fix R̄ > 0 such that

∂w

∂yj
(z) =

γ̄(1 + o(1))

|z|N+2s
for all |z| > R̄, for all j = 1, . . . , N.

where o(1)→ 0 as |z| → ∞ for some γ̄ > 0, thanks to [14, Lemma C.2].



FRACTIONAL NONLINEAR SCHRÖDINGER EQUATION 9

Lemma 3.1. For every l ∈ {1, . . . , `}, there exists ε̄ > 0 such that for all ε ∈ (0, ε̄)
one has ∫

RN
f ′(wi)wl

∂wi
∂yj

dz = γ̃il
(1 + o(1))

|qi − ql|N+2s

qij − qlj
|qi − ql|

, (3.1)

for all i = 1, . . . , `; for all j = 1, . . . , N ; where

γ̃il = γ̄V (Qi)
p
p−1−

N
2sV (Ql)

1
p−1−

N
2s

(∫
RN

f(w) dx

)
> 0.

Proof. To fix ideas, we consider only the case i = 1. Observe that w(z) = w(|z|)
for all z and

f(w(z))
w((1 + o(1))z + ξ)

w(ξ)
≤Cf(w(z)) for all z, ξ ∈ RN , with |ξ| sufficiently large.

Also note that,

lim
ρ→+∞

w(z + ρej)

w(ρ)
= lim
ρ→+∞

(
ρ

|(z1, . . . , zj , . . . , zN ) + (0, . . . , ρ, . . . , 0)|

)N+2s

= 1,

where w(ρ) = w(y) for any y such that |y| = ρ. Similarly,
w′(z+ρej)
w′(ρ) → 1 as

ρ→ +∞. Hence, if we put

ϑ(ρ) =

∫
RN

f(w)w

(
V (Ql)

1
2s

V (Q1)
1
2s

z + ρV (Ql)
1
2s ej

)
dz,

then by Dominated Convergence Theorem we get

ϑ(ρ)

w(ρV (Ql)
1
2s )
→
∫
RN

f(w) dz as ρ→ +∞.

Also we have

ϑ′(ρ) = V (Ql)
1
2s

∫
RN

f(w)w′
(
V (Ql)

1
2s

V (Q1)
1
2s

z + ρV (Ql)
1
2s ej

)
zj + ρV (Q1)

1
2s

|z + ρV (Q1)
1
2s ej |

dz,

that again by the Dominated Convergence Theorem leads to

ϑ′(ρ)

w′(ρV (Ql)
1
2s )
→ V (Ql)

1
2s

∫
RN

f(w) dz as ρ→ +∞.

Since ∫
RN

f(w1)wl dz = V (Q1)
p
p−1−

N
2sV (Ql)

1
p−1ϑ(|q1 − ql|),

it follows that

∂

∂q1j

(∫
RN

f(w1)wldy

)
= V (Q1)

p
p−1−

N
2sV (Ql)

1
p−1ϑ′(|q1 − ql|)

q1j − qlj
|q1 − ql|

= V (Q1)
p
p−1−

N
2sV (Ql)

1
p−1 + 1

2s

(∫
RN

f(w) dz

)
w′(V (Ql)

1
2s (q1 − ql))

q1j − qlj
|q1 − ql|

(1 + o(1)).

On the other hand,

∂

∂q1j

(∫
RN

f(w1)wldz

)
= −

∫
RN

f ′(w1)wl
∂w1

∂zj
dz.

Hence, by combining previous estimates we get (3.1) with i = 1. �

We now establish the following result that concerns the location of the peaks.
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Lemma 3.2. There exists ε̄ > 0 such that for all ε ∈ (0, ε̄) and each j ∈ {1, . . . , N},one
has

−ε ∂V
∂xj

(Qi)γ
∗ +

∑
l 6=i

γ̂il(1 + o(1))

|ql − qi|N+2s

qlj − qij
|ql − qi|

+O(ε2) + o(κN+2s) = 0,

where

γ̂ij = γ̄V (Qi)
p−2
p−1V (Ql)

1
p−1−

N
2s and γ∗ =

1

N

∫
RN

ww′|y|dy < 0,

for all i = 1, . . . , `; for all j = 1, . . . , N .

Proof. Let us fix ε0>0 sufficiently small such that λ
− 1

2s
i ri=δ̄ε

−1>R̄ for all ε∈(0, ε0),
where δ̄ > 0 is such that the Taylor expansion of V around the point Q0 holds.

ConsiderB0
i =

{
x ∈ RN | |x| < ri

}
, andBqλi =

{
x ∈ RN |λ

1
2s
i |x − q| < ri

}
, where

λi = V (Qi). It is sufficient to consider only the case when i = 1. Since we are
assuming that vε = W + φ solves the equation

(−∆)svε + V (εy)vε − f(vε) = 0 in RN .

Hence, multiplying the previous equality by ∂w1

∂yj
, by making a rearrangement of

the terms and integrating on RN , we get

0 =

∫
RN

∑̀
l=1

(
(−∆)swl + V (Ql)wl − f(wl)

)∂w1

∂yj
dy

+

∫
RN

∑̀
l=1

(
V (εy)− V (Ql)

)
wl
∂w1

∂yj
dy

−
∫
RN

(
f

(∑̀
l=1

wl

)
−
∑̀
l=1

f(wl)

)
∂w1

∂yj
dy

+

∫
RN

(
(−∆)sφ+ V (εy)φ− f ′

(∑̀
l=1

wl

)
φ

)
∂w1

∂yj
dy

−
∫
RN

(
f

(∑̀
l=1

wl + φ

)
− f

(∑̀
l=1

wl

)
− f ′

(∑̀
l=1

wl

)
φ

)
∂w1

∂yj
dy

= A1 +A2 −A3 +A4 −A5.

(3.2)

Now we estimate every term Ai.
Estimate for A1. Since (−∆)swl + V (Ql)wl − f(wl)=0 in RN for all l, then A1 =0.

Estimate for A2. Observe that

A2 =

∫
RN

(V (εy)− V (Q1))w1
∂w1

∂yj
dy +

∫
RN

∑
l 6=1

(V (εy)− V (Q0))wl
∂w1

∂yj
dy

+

∫
RN

∑
l 6=1

(V (Q0)− V (Ql))wl
∂w1

∂yj
dy

= A2,1 +A2,2 +A3,3.
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For estimating A2,1, we first work in Bq1λ1
. One has∫

B
q1
λ1

(V (εx)− V (Q1))w1
∂w1

∂yj
dy

= V (Q1)
2
p−1 + 1

2s

∫
B0
λ1

(V (εz +Q1)− V (Q1))w
(
λ

1
2s
1 z
) ∂w
∂zj

(
λ

1
2s
1 z
)
dz

= V (Q1)
2
p−1−

N
2s

∫
B0

1

∂V

∂yj
(Q1)εyj w

∂w

∂yj
dy +O(ε2)

= ελ
2
p−1−

N
2s

1

∂V

∂yj
(Q1)γ∗ +O(ε2),

where

γ∗ =

∫
RN

zjw
∂w

∂zj
dz =

∫
RN

ww′
z2
j

|z|
dz =

1

N

∫
RN

ww′|z| dz < 0.

Now we work on RN \Bq1λ1
. Since V is bounded and∣∣∣∣ ∫
RN\Bq1λ1

w1
∂w1

∂yj
dy

∣∣∣∣ = O(εN+4s),

we get ∫
RN\Bq1λ1

(V (εy)− V (Q1))w1
∂w1

∂yj
dy = O(εN+4s).

Then

A2,1 = ελ
2
p−1−

N
2s

1

∂V

∂yj
(Q1)γ∗ +O(εN+4s).

For A2,2, observe first that∫
RN

wl
∂w1

∂yj
dy = λ

1
p−1

1 λ
1
p−1−

N
2s

l

∫
RN

w(y)
∂w

∂yj

((λ1

λl

) 1
2s

y + λ
1
2s
1 (ql − q1)

)
dy.

Recalling the definition of Λε, for κ sufficiently small, we have |ql−q1| = O
(

1
κ

)
> R0

if l 6= 1. Then,

∂w

∂yj

((λ1

λl

) 1
2s

y + λ
1
2s
1 (ql − q1)

)
= −λ

1
2s
1

λ
1
2s

l

γ̄(1 + o(1))

λ
N+2s

2s
1 |ql − q1|N+2s

qlj − q1j

|ql − q1|
.

Now, note that∫
B

(
V

(
ε

1

λ
1
2s
1

z +Q0

)
− V (Q0)

)
w(z + q0) dz

=
1

2

ε2

λ
1
s
1

∫
B

D2V (Q0)|z|2w(z + q0) dz + o

(
ε2

∫
B

D2V (Q0)|z|2w(z + q0) dz

)
= O(ε2),

where B = B(0, R0). Besides, since V ∈ L∞(RN ), and
∫
RN w dz < ∞, by the

Dominated Convergence Theorem we get∫
RN\B(0,R0)

(
V

(
ε

1

λ
1
2s
1

z +Q0

)
− V (Q0)

)
w(z + q0) dz → 0 as ε→ 0.

It follows that∫
RN

∑
l 6=1

(V (εy)− V (Q0))wl
∂w1

∂yj
dy = o

(
1

|q1 − ql|N+2s

q1j − qlj
|q1 − ql|

)
+O(ε2).

Therefore, we get A2,2 = o(κN+2s) +O(ε2).
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For A2,3, we take into account that V (Q1) → V (Q0) as ε → 0, from where we
get immediately A2,3 = o(κN+2s). Thus

A2 = εV (Q1)
2
p−1−

N
2s
∂V

∂yj
(Q1) γ∗ +O(ε2) + o(κN+2s).

Estimate for A3. Decompose A3 in two terms,

A3 =

∫
B
q1
λ1

(
f

(∑̀
l=1

wl

)
− f(w1)

)
∂w1

∂yj
dy +

∫
RN\Bq1λ1

(
f

(∑̀
l=1

wl

)
− f(w1)

)
∂w1

∂yj
dy

= A3,1 +A3,2.

On Bq1λ1
we have

A3,1 =

∫
B
q1
λ1

∑
l 6=1

f ′(w1)wl
∂w1

∂yj
dy + o

(∫
B
q1
λ1

∑
l 6=1

f ′(w1)wl
∂w1

∂yj
dy

)
=
∑
l 6=1

γ̃l1(1 + o(1))

|q1 − ql|N+2s

q1j − qlj
|q1 − ql|

+ o(κN+2s),

where we have use Lemma 3.1. Outside Bq1λ1
we get

A3,2 = o

(∑
l 6=1

γ0

|ql − q1|N+2s

)
= o(κN+2s),

that implies

A3 =
∑
l 6=1

γ̃1l(1 + o(1))

|q1 − ql|N+2s

q1j − qlj
|q1 − ql|

+ o(κN+2s).

Estimate for A4. Note that

(−∆)s
∂w1

∂yj
+ V (Q1)

∂w1

∂yj
− f ′(w1)

∂w1

∂yj
= 0.

This last equality implies that

A4 =

∫
RN

(
V (εy)− V (Q1)

)∂w1

∂yj
φdy −

∫
RN

(
f ′
(∑̀
l=1

wl

)
− f ′(w1)

)
∂w1

∂yj
φdy

= A4,1 +A4,2.

Observe that∫
B
q1
λ1

(V (εy)−V (Q1))φ
∂w1

∂yj
dy = ελ

1
p−1−

N
2s

1

∫
B0
λ1

∇V (Q1)· y φ(λ
− 1

2s
1 y+q1)

∂w

∂yj
dy+O(ε2)

and ∫
RN\Bq1λ1

(V (εy)− V (Q1))φ
∂w1

∂yj
dy = O(εκN+2s).

Thus, by Proposition 2.5 we deduce that

|A4,1| = O

(
ε

∫
RN
|y||%(λ−

1
2s y + q1))µ|

∣∣∣ ∂w
∂yj

∣∣∣ dy)‖φ‖∗ +O(εκN+2s)

≤ O(ε2 + εκN+2s),
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where % is the function defined in (2.15) and µ the corresponding value given in the
definition of the norm ‖ · ‖∗ in (2.14). Besides, note that∫
RN

(
f ′
(∑̀
l=1

wl

)∑̀
l=1

∂wl
∂yj
−f ′(w1)

∂w1

∂yj

)
φdy =

∫
RN

∂

∂yj

(
f

(∑̀
l=1

wl

)
− f(w1)

)
φdy

= −
∫
RN

(
f

(∑̀
l=1

wl

)
− f(w1)

)
∂φ

∂yj
dy.

Hence

|A4,2| = O

(∫
RN
|%(y)µ|

∣∣∣∣f(∑̀
l=1

wl

)
− f(w1)

∣∣∣∣ dy)‖∇φ‖∗
= O

(∫
RN

1

(1 + |y − q1|)(N+2s)(p−1)+σ
dy

)∑
l 6=1

(1 + o(1))

|ql − q1|N+2s−σ ‖∇φ‖∗.

The previous two equalities and the estimate of ‖∇φ‖∗ in Proposition 2.5 lead to

A4 = O
(
εmin{N+2s−σ,1} + κN+2s−σ)∑

l 6=1

(1 + o(1))

|ql − q1|N+2s−σ ≤ o(κ
N+2s).

Estimate for A5. Observe that by Lemma 2.3 one has∣∣∣∣ ∫
RN

Nε(φ)φ
∂w1

∂yj
dy

∣∣∣∣ ≤ ‖φ‖min{p+1,3}
∗ O

(∫
RN
|%(y)|2µ

∣∣∣∂w1

∂yj

∣∣∣dy),
so that, by Proposition 2.5 we get A5 = O

(
ε2 + εκN+2s

)
.

We finish the proof by considering the previous estimates for each Ai and replacing
all of them at the equation (3.2). �

Proof of the Theorem 1.1. We have now all ingredients to finish the proof. Indeed, it
is enough for us to follow closely the final argument of the proof of [15, Theorem 1.2].
Without loss of generality, we can assume that |Q1 −Q2| = mini6=j |Qi −Qj | = dε.
In this way, if we put

δεij =
(1 + o(1))

|qi − qj |N+2s
= εN+2s (1 + o(1))

|Qi −Qj |N+2s
,

then

δε12 = max
i 6=j

δεij =
εN+2s

dN+2s
ε

= δε.

For ε > 0 given, consider the set Qε ⊂ Λε of the ` points where the solution of (1.1)
is concentrated; i.e. Qε = {Q1, . . . , Ql}. Let

Sε=

{
Qk
ε
∈Qε |Qk=Q1 or ∃Qk1 , . . . , Qkl such that lim

ε→0

|Qkj−Qk1|
dε

=1, j = 2, . . . , l

}
.

It is not difficult to check that there exists Qi ∈ Sε and a hyperplane H, such that
Qi ∈ H and any other point of Sε belongs to the same half-space of RN divided by
H. If ε

δε
→ 0, we can divided the equation on Lemma 3.2 by δε to obtain∑

l 6=i

δεil
δε

(Qlj −Qij)
|Ql −Qi|

= o(1) and
∑

l 6=i,Qi∈Sε

δεil
δε

Qlj −Qij
|Ql −Qi|

= o(1). (3.3)

Since Qi ∈ Sε there exists l 6= i such that limε→0
δεil
δε

= 1 > 0 and all Qεj , with

j 6= i, belong the same half-space of RN divide by H, but this is a contradiction
with (3.3). Therefore δε = O(ε).

Now we choose a point Q̄ ∈ Qε such that |Q̄−Q0| = maxj=1,...,` |Qj−Q0| := αε.
Without loss of generality, we can assume that Q̄ = Q1 and by an appropriate
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rotation and translation, also we can assume that Q0 = 0 and Q1 = (−αε, 0, . . . , 0).
For others points Ql, with l 6= 1, we have Ql1 −Q11 > 0. By Lemma 3.2 we have

− ∂V
∂x1

(Q1) +
1

γ∗

∑
l 6=1

γ̂1lδ
ε
1l

ε

Ql1 −Q11

|Ql −Q1|
+O(ε) + o(ε−1κN+2s) = 0.

Now, given 0 ≤ ρ < N + 2s− 2, we can take κ = ε
2+ρ
N+2s . Notice that

δε
ε

= O(αε). (3.4)

Indeed, if δεε 6= O(αε), then αε = o( δεε ) and |Ql| = o( δεε ). As before, there is a point
Qi ∈ Sε and a hyperplane H such that Qi ∈ H and all the other points belong to
the same half-space of RN divided by H. By Lemma 3.2 we obtain

1

γ∗

∑
l 6=i

γ̂ilδ
ε
il

ε

Qlj −Qij
|Ql −Qi|

+ o
(δε
ε

)
+O(ε) + o(ε1+ρ) = 0. (3.5)

Nevertheless, there exists l 6= i such that limε→0
δεil
δε

= 1 and for all Ql such that

lim
ε→0

|Ql −Qi|
dε

= 1,

Ql − Qi are vectors lying on the same half-space, which leads to a contradiction
with (3.5).

Since (3.4) holds, we get

V11(0)αε +
1

γ∗

∑
l 6=1

γ̂1lδ
ε
1l

εαε

Ql1 −Q11

|Ql −Q1|
αε + o(αε) = 0,

which is impossible due to that

V11(0) +
1

γ∗

∑
l 6=1

γ̂1lδ
ε
1l

εαε

Ql1 −Q11

|Ql −Q1|
> V11(0) > 0.

This completes the proof. �

4. Proof of the Theorem 1.2

4.1. The reduced energy. Since solutions of (2.22) correspond to stationary
points of its associated energy functional Jε defined by (2.20), we have that if
a solution of the form vε := W +φ in RN exists for (2.22), in which W is defined by

(2.7) and φ = φ(q) is given in Proposition 2.5, then we should have Jε(ṽε) ∼ Jε(W̃ ),

where ṽε and W̃ are the unique s-harmonic extensions of vε and W , respectively,
and the corresponding points q in the definition of W also should be approximately

stationary for the finite-dimensional functional q 7→ Jε(W̃ ). Thus, our next goal is

to estimate Jε(W̃ ). The first lemma contains a crucial estimate for this aim. By
convenience, in what follows, we fix R0 > 0 such that

w(z) =
γ0(1 + o(1))

|z|N+2s
for all |z| > R0, for all j = 1, . . . , N.

where o(1)→ 0 as |z| → ∞ for some γ0 > 0, thanks to (1.3).

Lemma 4.1. Let σ ∈
(
N
2 , N + 2s

)
be fixed. For any q = (q1, . . . , q`) ∈ Λε such

that mini 6=j |qi − qj | ≥ 1
κ , where Λε is defined by (2.6), and for sufficiently small ε,

we have

Jε
(
W̃
)

=
∑̀
i=1

V (Qi)
p+1
p−1−

N
2s I1(w)− γ

∑
i 6=j

τiτj
γij(1 + o(1))

|qi − qj |N+2s

+O
(
εmin{N+2s,2})+ o

(
κN+2s

)
,
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where τi ∈ {−1,+1}, I1 is given by (1.5) with λ = 1,

γ :=
γ0

2

∫
RN

f(w) dx and γij := V (Qi)
1
p−1−

N+2s
2s V (Qj)

p
p−1 for i 6= j.

Proof. Let us fix ε0 > 0 sufficiently small such that λ
− 1

2s
i ri = δ̄ε−1 > R0 for all

ε ∈ (0, ε0). Observe that

Jε
(
W̃
)

=
∑̀
i=1

Jε(w̃i) +
1

2

∫
RN

(∑
i 6=j

τiτjwi(−∆)swj

)
dx

+
1

2

∫
RN

(∑
i 6=j

V (εx)τiτjwiwj

)
dx−

∫
RN

(
F (W )−

∑̀
i=1

F (wi)

)
dx.

It is easy to check that

Jε(w̃i) = V (Qi)
p+1
p−1−

N
2s I1(w) +

1

2

∫
RN

(V (εx)− V (Qi))w
2
i (x) dx.

Moreover, since
∫
B0
i
ziw

2 (z) dz = 0 for all i, where B0
i =

{
x ∈ RN | |x| < ri

}
, by

letting Bqλi =
{
x ∈ RN |λ

1
2s
i |x− q| < ri

}
, we obtain∫

B
qi
λi

(V (εx)− V (Qi))w
2
i dx = λ

2
p−1

i

∫
B0
λi

(V (Qi + εz)− V (Qi))w
2
(
λ

1
2s
i z
)
dz

= λ
2
p−1−

N
2s−

1
2s

i

∫
B0
i

∇V (Qi) · εz w2 dz +O(ε2)

= O
(
ε2
)
,

and∫
RN\Bqiλi

(V (εx)− V (Qi))w
2
i dx = λ

2
p−1

i

∫
RN\B0

λi

(V (Qi + εz)− V (Qi))w
2
(
λ

1
2s
i z
)
dz

≤ Cε2(N+2s−σ)

∫ ∞
ri

ρN−1

ρ2σ
dρ

= O
(
εN+2s

)
.

On the other hand, using the equation solved by wj , i 6= j, we obtain∫
RN

τiτj(wi(−∆)swj + λjwiwj − wif(wj)) dx = 0.

Now, we estimate each term of interactions between two different peaks. We have∫
RN

wif(wj) dx = λ
1
p−1

i λ
p
p−1−

N
2s

j

∫
RN

f(w(y))w
((λi

λj

) 1
2s

y + λ
1
2s
i (qj − qi)

)
dy.

Recalling the definition of Λε, for κ sufficiently small, we have that |qi − qj | > R0

if i 6= j. Then,

w
((λi

λj

) 1
2s

y + λ
1
2s
i (qj − qi)

)
=

γ0(1 + o(1))

λ
N+2s

2s
i |qj − qi|N+2s

.

Therefore, we obtain∫
RN

wif(wj) dx = λ
1
p−1−

N+2s
2s

i λ
p
p−1−

N
2s

j

(∫
RN

f(w) dx

)
γ0

|qj − qi|N+2s
(1 + o(1)).

Now, we estimate∫
RN

(wi(−∆)swj + V (εx)wiwj) dx =

∫
RN

(wif(wj) + (V (εx)− V (Qj))wiwj) dx.
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The first term has been analyzed. Let us continue with the second term. We have∫
RN

V (εx)wiwj dx = λ
1
p−1

i λ
1
p−1

j

∫
RN

V (εx)w
(
λ

1
2s
i (x− qi)

)
w
(
λ

1
2s
j (x− qj)

)
dx.

Also we have ∣∣∣∣ ∫
B
qi
λi

(V (εx)− V (Qi))wiwj dx

∣∣∣∣ = O(ε2)

and ∣∣∣∣ ∫
RN\Bqiλi

(V (εx)− V (Qi))wiwj dx

∣∣∣∣ = o
(
κN+2s

)
.

Finally, letting Ωi = {x ∈ Ω : wi > wj for all j 6= i}, we obtain∫
Ωi

(
F (W )−

∑̀
i=1

F (wi)

)
dx

=
∑
j 6=i

∫
Ωi

τiτjf(wi)wj dx−
∑
j 6=i

∫
Ωi

F (wj) dx+O

(∑
j 6=i

∫
Ωi

f ′(wi)w
2
j dx

)
=
∑
i 6=j

τiτjλ
p
p−1−

N
2s

i λ
1
p−1−

N+2s
2s

j

γ0(1 + o(1))

|qi − qj |N+2s

∫
RN
f(w) dx+O

(
ε2σ−Nκ2(N+2s−σ)

)
.

Thus, the proof is completed considering all previous estimates. �

4.2. A suitable expansion of Jε. We start this subsection by validating an ex-
pansion for the functional Jε given in (2.23) for q ∈ Λε, the set defined in (2.6),
which will be crucial for finding its critical points. Here, W is given by (2.7).

Proposition 4.2. Let q ∈ Λε be such that mini6=j |qi − qj | = 1
κ , and let σ ∈(

N
2 ,

N+2s
2

)
. If φ = φ(q) is the function given in Proposition 2.5, then the following

expansions hold:

Jε(q) = Jε
(
W̃
)

+O
(
εmin{2(N+2s−σ),2} + κ2(N+2s−σ)

)
and

∇qJε(q) = ∇qJε
(
W̃
)

+O
(
εmin{2(N+2s−σ),2} + κ2(N+2s−σ)

)
uniformly on the vectors q.

Proof. Let q ∈ Λε. Then,

Jε(q) = Jε
(
W̃
)
− 1

2

∫
RN

φEε dx+
1

2

∫
RN

φ(f(W + φ)− f(W )) dx

−
∫
RN

(
F (W + φ)− F (W )− f(W )φ

)
dx

+
1

2

∫
RN

φ((−∆)s(W + φ) + V (εx)(W + φ)− f(W + φ) dx

+
1

2

∑̀
i=1

τi

∫
RN

φ((−∆)swi + V (Qi)wi − f(wi)) dx.

Since (−∆)s(W +φ+V (εx)(W +φ)− f(W +φ) ∈ Z, with Z defined by (2.8), and
φ is L2- orthogonal to Z, we obtain∫

RN
φ((−∆)s(W + φ) + V (εx)(W + φ)− f(W + φ)) dx = 0.

Besides, (−∆)swi +V (Qi)wi− f(wi) = 0 in RN for all i = 1, . . . , `. Now, observe
that, because of (2.19) and Proposition 2.5, we have∣∣∣∣ ∫

RN

(
f(W + φ)− f(W ))− Eε

)
φdx

∣∣∣∣ = O
(
εmin{2(N+2s−σ),2} + κ2(N+2s−σ)

)
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and∣∣∣∣ ∫
RN

(
F (W + φ)− F (W )− f(W )φ

)
dx

∣∣∣∣ = O
(
εmin{2(N+2s−σ),2} + κ2(N+2s−σ)

)
.

Then, considering estimates in Lemma 4.1, the desired estimate for Jε(q) follows.
Now, observe that

∇qJε(q)=∇qJε
(
W̃
)
− 1

2

∫
RN
∇qφEε dx−

1

2

∫
RN

φ∇qEε dx

+
1

2

∫
RN
∇qφ(f(W+φ)−f(W ))dx+

1

2

∫
RN

(f ′(W+φ)−f ′(W ))φ∇qWdx

+
1

2

∫
RN
f ′(W+φ)(∇qφ)φdx−

∫
RN

(
f(W + φ)−f(W )−f ′(W )φ

)
∇qWdx

−
∫
RN

(
f(W + φ)− f(W )

)
∇qφdx.

Then, by using the estimates for ‖φ‖∗ and ‖∇qφ‖∗ in Proposition 2.5 and for
‖Eε‖∗ and ‖∇qEε‖∗ given in (2.19), we are able to prove the estimate for ∇qJε(q).
Therefore, the proof is completed. �

4.3. A minimization argument. Let ` ∈ N, and let us set τ2l−1 = 1 and τ2l = −1
for l = 1, . . . , `. By following the arguments developed in [15, 9], we choose the
configuration space:

Σε =
{

q ∈ Λε | q1, . . . , q2` ∈ ωε and min
i 6=j
|qi − qj | > ε−

s
N+2s

}
,

with Λε given by (2.6), with κ = ε.

Proposition 4.3. The problem

min
q∈Σε

Jε(q)

admits a minimizer qε = (q1,ε, . . . , q2`,ε) ∈ Σε for all ε > 0 sufficiently small.

Proof. Since Jε is continuous, there is a minimizer qε = (q1,ε, . . . , q2`,ε) ∈ Σε. To
validate our result, we need to prove that qε ∈ Σε. Then, we start looking for an

upper bound on Jε(qε). We choose Q0
i = Q0 + ε

N
N+2sXi, where Xi, i = 1, 2, . . . , 2`

are the 2` vortices of a regular 2`-polygon centered at Q0 with |X2k+1−X2k| = 1 for
all k = 1, . . . , `, where we have considered X2`+1 = X1, and mini 6=j |Xi −Xj | = 1.
Moreover, choose sufficiently small ε > 0 and let q0 ∈ ωε such that

1

|q0
2k − q0

2k+1|N+2s
= ε2s for all k = 1, . . . , `,

where we have considered q0
2`+1 = q0

1 . Therefore, q0 = (q0
1 , . . . , q

0
2`) ∈ Σε. Note

that in general, if i 6= j, then |Xi − Xj | ≤ Cij , where 1 ≤ Cij ≤ C0, with C0 =
maxi 6=j |Xi −Xj |. Then, we obtain

1

|q0
i − q0

j |N+2s
≥ 1

CN+2s
0

ε2s for all i 6= j, 0 < −
∑
i6=j

τiτj
1

|q0
i − q0

j |N+2s
= O

(
ε2s
)
,

and, by Taylor’s expansion, V (Q0
i ) = V (Q0) + O

(
ε

2N
N+2s

)
for all ε > 0 sufficiently

small. Indeed,

−
∑
i 6=j

τiτj
1

|q0
i − q0

j |N+2s
= −

2l−1∑
j=1

2l−j∑
i=1

τiτi+j
1

|q0
i − q0

i+j |N+2s

= −
l∑

k=1

2l−(2k−1)∑
i=1

τiτi+2k−1
1

|q0
i − q0

i+2k−1|N+2s
−

l−1∑
k=1

2l−2k∑
i=1

τiτi+2k
1

|q0
i − q0

i+2k|N+2s
.
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Notice that τiτi+2k−1 = −1 and τiτi+2k = 1. Then,

−
∑
i6=j

τiτj
1

|q0
i − q0

j |N+2s
=

l∑
k=1

2l−(2k−1)∑
i=1

1

|q0
i − q0

i+2k−1|N+2s
−
l−1∑
k=1

2l−2k∑
i=1

1

|q0
i − q0

i+2k|N+2s
.

Now, observe that

|q0
i − q0

i+2k−1| ≥ min
i 6=j

∣∣q0
i − q0

j

∣∣ = ε−
2s

N+2s ,

which leads to

−
l−1∑
k=1

2l−2k∑
i=1

1

|q0
i − q0

i+2k|N+2s
≥ −ε2s(l − 1). (4.1)

On the other hand,

|q0
i − q0

i+2k−1| ≤ |q0
i − q0

i+1|+ . . .+ |q0
i+2k−2 − q0

i+2k−1| ≤ (2k − 1)ε−
2s

N+2s ,

which gives

l∑
k=1

2l−(2k−1)∑
i=1

1

|q0
i − q0

i+2k−1|N+2s
≥ ε2s

l∑
k=1

(2l − (2k − 1))

(2k − 1)N+2s
. (4.2)

Gathering (4.1) and (4.2), we conclude

−
∑
i 6=j

τiτj
1

|q0
i − q0

j |N+2s
≥ ε2s

(
l∑

k=1

(2l − (2k − 1))

(2k − 1)N+2s
− l + 1

)

= ε2s

(
l +

l∑
k=2

(2l − (2k − 1))

(2k − 1)N+2s

)
> 0.

Hence, going back to the main estimate, taking into account the choice of q0

and its properties, by Lemma 4.1 and Proposition 4.2, we obtain

Jε(qε) = min
q∈Λε

Jε(q) ≤ Jε(q0) ≤ 2`V (Q0)
p+1
p−1−

N
2s I1(w) + C εmin{2s, 2N

N+2s}. (4.3)

Now, we claim that qε ∈ Σε. Let us suppose, by contradiction, that qε 6∈ Σε.
Hence, we have two possibilities: either there is an index i such that qi,ε ∈ ∂ωε or

|qi,ε − qj,ε| = ε−
s

N+2s , for some j 6= i.
In the first case, if qi,ε ∈ ∂ωε, assumption (V2) implies that V (Qi,ε) > V (Q0)+µ1

for some µ1 > 0. According to Proposition 4.2, we have

2∑̀
i=1

V (Qi,ε)
p+1
p−1−

N
2s I1(w) = V (Qi,ε)

p+1
p−1−

N
2s I1(w) +

∑
j 6=i

V (Qj,ε)
p+1
p−1−

N
2s I1(w)

>
∑
j 6=i

V (Qj,ε)
p+1
p−1−

N
2s I1(w) + V (Q0)

p+1
p−1−

N
2s I1(w) + µ2

> 2` V (Q0)
p+1
p−1−

N
2s I1(w) + µ2

for some µ2 > 0, which is a contradiction with (4.3).
In the second case, we again invoke Proposition 4.2 and obtain

Jε(qε) ≥ 2` I1(w)V (Q0)
p+1
p−1−

N
2s + C0ε

s

for some C0 > 0. Since εs > εmin{2s, 2N
N+2s} for all ε > 0 sufficiently small, we again

obtain a contradiction with (4.3). Therefore, the proof is completed. �

Proof of Theorem 1.2. The conclusion follows from Lemma 2.6, Proposition 4.2,
Proposition 4.3 and the minimization argument. �
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Appendix A. Proofs of the results in subsection 2.4

Proof of Lemma 2.3. Let q be in Λε fixed. There exist 0 < t2 < t1 < 1 such that

|Nε(φ)| = |f(W + φ)− f(W )− f ′(W )φ| = |f ′′(W + t2φ)φ2t1|.
Now, we consider two cases: when |W | ≥ φ and otherwise. If |W | ≤ φ, we obtain

|Nε(φ)| ≤ C|φ|p, (A.1)

and if |W | ≥ φ, we obtain

|Nε(φ)| ≤ C|φ|2, (A.2)

since f ′(cW ) ≤ C for any fixed c > 0. Therefore, the estimate on the left hand
side in (2.17) follows from (A.1) and (A.2).

On the other hand, for some 0 < t1 < 1, we obtain

|f ′(W + φ)− f ′(W )| = p(p− 1)|W + t1φ|p−2|φ| ≤ C|φ|min{p−1,1},

that leads to the estimate on the right hand side in (2.17). Besides, for ψ ∈ C∗, we
obtain |%−µ(f ′(W + φ)− f ′(W ))ψ| ≤ |φ|min{p−1,1}|%−µψ|. Therefore,

‖(f ′(W + φ)− f ′(W ))ψ‖∗ ≤ C‖φ‖min{p−1,1}
∗ ‖ψ‖∗.

Finally, since

∂

∂qil
Nε(φ) = (f ′(W + φ)− f ′(W )− f ′′(W )φ)

∂W

∂qil
+ (f ′(W + φ)− f ′(W ))

∂φ

∂qil
,

we obtain (2.18). Therefore, the proof is completed. �

Proof of Lemma 2.4. First, note that Eε = E1,ε + E2,ε, where

E1,ε :=
∑̀
i=1

τi(V (Qi)− V (εx))wi and E2,ε := f (W )−
∑̀
i=1

τif(wi). (A.3)

A simple computation gives ‖E1,ε‖∗ ≤ Cεmin{N+2s−σ,1}. Thus, we only need to
estimate ‖E2,ε‖∗. For convenience, we work on Ωi :=

{
x ∈ RN : wi > wj if j 6= i

}
for all i = 1, . . . , `. Hence, in Ωi, we obtain

E2,ε ≤ Cf ′(wi)
∑
j 6=i

1

|x− qj |N+2s

≤ C 1

(1 + |x− qi|)(N+2s)(p−1)+σ

∑
j 6=i

1

|qi − qj |N+2s−σ

≤ C(%(x))µκN+2s−σ,

where we have considered µ(N − 2s) = σ. Since ‖Eε‖∗ ≤ ‖E1,ε‖∗ + ‖E2,ε‖∗, the
estimate on the left hand side in (2.19) follows.

On the other hand, observe that

∇qi(V (Qi)−V (εx))=ε|∇V (Qi)|;
∣∣∇qi(w(V (Qi)

1
2s (x−qi)

))∣∣≤C 1

(1+|x− qi|)N+2s+1
,

|ε∇V (Qi)wi(x)| ≤ C ε|∇V (Qi)|
(1 + |x− qi|)N+2s

and

|(V (Qi)− V (εx))∇qiwi(x)| ≤ C ε|∇V (Qi)||x− qi|
(1 + |x− qi|)N+2s

(
ε+

1

1 + |x− qi|

)
.

Therefore, since Eε = E1,ε + E2,ε where E1,ε and E2,ε are given by (A.3), from
(V2), we obtain ‖∇qE1,ε‖∗ = O(ε). On the other hand, on the set Ωi, we obtain

|%(x)−µ(f ′(W )− f ′(wi))∇qiwi| ≤ CκN+2s−σ.
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In this way, ‖∇qE2,ε‖∗ ≤ CκN+2s−σ. Since ‖∇qEε‖∗ ≤ ‖∇qE1,ε‖∗ + ‖∇qE2,ε‖∗,
the estimate on the right hand side in (2.19) follows. �

Proof of Proposition 2.5. Let us consider the operatorFε : Ar → C∗ defined by
Fε(φ)=Tε(Nε(φ) + Eε), where Tε is given by Proposition 2.1 and

Ar := {φ ∈ C∗ : ‖φ‖∗ ≤ r}

for a suitable 0 < r � 1, which we will choose later. Note that if we are able to
show that Fε is a contraction, then we shall obtain that there is a fixed point in Ar
for Fε, which is equivalent to solving (2.10). We have

‖Fε(φ)‖∗ ≤ ‖Tε (Nε(φ) + Eε) ‖∗ ≤ C‖Nε(φ) + Eε‖∗ ≤ C1

(
rmin{p,2} + ‖Eε‖∗

)
.

Additionally, we note that

‖Fε(φ1)− Fε(φ2)‖∗ ≤ C‖Nε(φ1)−Nε(φ2)‖∗ for φ1, φ2 ∈ Ar.

Hence, Fε is a contraction ifNε also it is. Observe that |Nε(φ1)−Nε(φ2)|= |N ′ε(ϕ)| |φ1−
φ2| for some ϕ on the line that joins φ1 with φ2. In this way, from (2.17) it follows
that

‖Nε(φ1)−Nε(φ2)‖∗ ≤ C‖ϕ‖min{p−1,1}
∗ ‖φ1 − φ2‖∗,

and then ‖Fε(φ1)− Fε(φ2)‖∗ ≤ Crmin{p−1,1}‖φ1 − φ2‖∗.
Now, choosing a suitable r > 0, for ε > 0 sufficiently small we obtain ‖Fε(φ)‖∗ ≤ r
for all φ ∈ Ar, and ‖Fε(φ1)− Fε(φ2)‖∗ < ‖φ1 − φ2‖∗ for φ1, φ2 ∈ Ar.

Concerning the differentiability properties, recall that φ is defined by the relation

Bε(φ,q) := φ− Tε(Nε(φ) + Eε) = 0.

Hence, ∇φBε(φ,q)[η] = η−Tε(η N ′ε(φ)) := η+Mε(η), whereMε(η) = −Tε(ηN ′ε(φ)).

Now, by using the fact that φ ∈ Ar, from (2.17) we get ‖Mε(η)‖∗ ≤ C‖η‖min{p−1,1}
∗ .

This implies that for small ε, the linear operator ∇φBε(φ,q) is invertible in C∗, with
a uniformly bounded inverse depending continuously on its parameters. Then, by
applying the implicit function theorem, we obtain that φ(q) is a C1-function into
C∗, with ∇qφ = −(∇φBε(φ,q))−1(∇qBε(φ,q)). Since

∇qBε(φ,q) = −∇qTε(Nε(φ) + Eε)− Tε(∇qNε(φ) +∇qEε),

where all these expressions depend continuously on their parameters, it follows that

‖∇qφ‖∗ ≤ C(‖Nε(φ)‖∗ + ‖Eε‖∗ + ‖∇qNε(φ)‖∗ + ‖∇qEε‖∗),

and using the first part of this proposition, the estimates (2.17), (2.18) and (2.19),
Proposition 2.1 and the constraints (2.6), we have completed the proof. �

Appendix B. Proof of Lemma 2.6

Proof of Lemma 2.6. First, we assume that uε is a solution of (1.1) or, equivalently,
that vε given by (2.21) solves (2.22). Then, for each i = 1, 2, . . . , `, it follows that

∇qJε(ṽε)

[
∂̃vε
∂qil

]
= 0.

In other words,

∂Jε
∂qil

(q) = bs

∫∫
RN+1

+

t1−2s∇ṽε∇
(
∂̃vε
∂qil

)
dx dt+

∫
RN

(
V (εx)vε

∂vε
∂qil
− f(vε)

∂vε
∂qil

)
dx

=

∫
RN

(
(−∆)svε + V (εx)vε − f(vε)

) ∂vε
∂qil

dx

= 0,
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for all i, j, which implies that q is a critical point of Jε. On the other hand, if q is
a critical point of Jε, then, for vε given by (2.21), from (2.10) we have that

∇qJε(ṽε)

[
∂̃vε
∂qil

]
=
∑̀
j=1

N∑
k=1

cjkZjk
∂(W + φ)

∂qil
= 0 for all i, l,

or equivalently∑̀
j=1

N∑
k=1

cjk ((−∆)sZjk Zil + V (εx)ZjkZil + o(1)) = 0 for all i, l,

where o(1) → 0 uniformly in the ‖ · ‖∗-norm since ∂(W+φ)
∂qil

= −τiZil + o(1). Now,

noticing that the last system on the cil’s is almost diagonal, we can conclude that
cil = 0 for all i, l, and therefore vε solves (2.22). �
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